from sas.models.BaseComponent import BaseComponent from sas.models.RPAModel import RPAModel from copy import deepcopy max_case_n = 10 class RPA10Model(BaseComponent): """ This multi-model is based on Parratt formalism and provides the capability of changing the number of layers between 0 and 10. """ def __init__(self, multfactor=1): BaseComponent.__init__(self) """ :param multfactor: number of cases in the model, assumes 0<= case# <=10. """ ## Setting model name model description self.description="" model = RPAModel() self.model = model self.name = "RPA10Model" self.description=model.description self.case_num = multfactor ## Define parameters self.params = {} ## Parameter details [units, min, max] self.details = {} # non-fittable parameters self.non_fittable = model.non_fittable # list of function in order of the function number self.fun_list = self._get_func_list() ## dispersion self._set_dispersion() ## Define parameters self._set_params() ## Parameter details [units, min, max] self._set_details() #list of parameter that can be fitted self._set_fixed_params() self.model.params['lcase_n'] = self.case_num ## functional multiplicity of the model self.multiplicity_info = [max_case_n,"Case No.:",["C/D Binary Mixture of Homopolymers", "C-D Diblock Copolymer", "B/C/D Ternary Mixture of Homopolymers", "B/C-D Mixture of Homopolymer B and Diblock Copolymer C-D", "B-C-D Triblock Copolymer", "A/B/C/D Quaternary Mixture of Homopolymers", "A/B/C-D Mixture of Homopolymer A/B and Diblock C-D", "A/B-C-D Mixture of Homopolymer A and triblock B-C-D", "A-B/C-D Mixture of Diblock Copolymer A-B and Diblock C-D", "A-B-C-D Four-block Copolymer"], []] def _clone(self, obj): """ Internal utility function to copy the internal data members to a fresh copy. """ obj.params = deepcopy(self.params) obj.non_fittable = deepcopy(self.non_fittable) obj.description = deepcopy(self.description) obj.details = deepcopy(self.details) obj.dispersion = deepcopy(self.dispersion) obj.model = self.model.clone() return obj def _set_dispersion(self): """ model dispersions """ ##set dispersion from model self.dispersion = {} def _set_params(self): """ Concatenate the parameters of the model to create this model parameters """ # set the case number first self.model.params['lcase_n'] = self.case_num # rearrange the parameters for the given # of shells for name , value in self.model.params.iteritems(): if name == 'lcase_n': continue elif name.lower() == 'scale' or \ name.lower() == 'background': self.params[name] = value elif self.case_num <= 1: if name.lower() == 'nc' or \ name.lower() == 'phic' or \ name.lower() == 'vc' or \ name.lower() == 'lc' or \ name.lower() == 'bc' or \ name.lower() == 'nd' or \ name.lower() == 'phid' or \ name.lower() == 'vd' or \ name.lower() == 'ld' or \ name.lower() == 'bd' or \ name.lower() == 'kcd': self.params[name] = value elif self.case_num > 1 and self.case_num <= 4: if name.lower() == 'nb' or \ name.lower() == 'phib' or \ name.lower() == 'vb' or \ name.lower() == 'lb' or \ name.lower() == 'bb' or \ name.lower() == 'nc' or \ name.lower() == 'phic' or \ name.lower() == 'vc' or \ name.lower() == 'lc' or \ name.lower() == 'bc' or \ name.lower() == 'nd' or \ name.lower() == 'phid' or \ name.lower() == 'vd' or \ name.lower() == 'ld' or \ name.lower() == 'bd' or \ name.lower() == 'kbc' or \ name.lower() == 'kbd' or \ name.lower() == 'kcd' : self.params[name] = value else: if name.lower() == 'na' or \ name.lower() == 'phia' or \ name.lower() == 'va' or \ name.lower() == 'la' or \ name.lower() == 'ba' or \ name.lower() == 'nb' or \ name.lower() == 'phib' or \ name.lower() == 'vb' or \ name.lower() == 'lb' or \ name.lower() == 'bb' or \ name.lower() == 'nc' or \ name.lower() == 'phic' or \ name.lower() == 'vc' or \ name.lower() == 'lc' or \ name.lower() == 'bc' or \ name.lower() == 'nd' or \ name.lower() == 'phid' or \ name.lower() == 'vd' or \ name.lower() == 'ld' or \ name.lower() == 'bd' or \ name.lower() == 'kab' or \ name.lower() == 'kac' or \ name.lower() == 'kad' or \ name.lower() == 'kbc' or \ name.lower() == 'kbd' or \ name.lower() == 'kcd' : self.params[name] = value def _set_details(self): """ Concatenate details of the original model to create this model details """ for name ,detail in self.model.details.iteritems(): if name in self.params.iterkeys(): self.details[name]= detail def _get_func_list(self): """ Get the list of functions in each cases """ func_list = {} return func_list def getProfile(self): """ Get SLD profile : return: None, No SLD profile supporting for this model """ return None def setParam(self, name, value): """ Set the value of a model parameter : param name: name of the parameter : param value: value of the parameter """ # set param to new model self._setParamHelper( name, value) self.model.setParam( name, value) def _setParamHelper(self, name, value): """ Helper function to setParam """ # Look for standard parameter for item in self.params.keys(): if item.lower()==name.lower(): self.params[item] = value return raise ValueError, "Model does not contain parameter %s" % name def _set_fixed_params(self): """ Fill the self.fixed list with the model fixed list """ pass def run(self, x = 0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return self.model.run(x) def runXY(self, x = 0.0): """ Evaluate the model : param x: input q-value (float or [float, float] as [qx, qy]) : return: scattering function value """ return self.model.runXY(x) ## Now (May27,10) directly uses the model eval function ## instead of the for-loop in Base Component. def evalDistribution(self, x = []): """ Evaluate the model in cartesian coordinates : param x: input q[], or [qx[], qy[]] : return: scattering function P(q[]) """ # set effective radius and scaling factor before run return self.model.evalDistribution(x) def calculate_ER(self): """ """ return self.model.calculate_ER() def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter : param parameter: name of the parameter [string] :dispersion: dispersion object of type DispersionModel """ pass