/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * */ #include #include "parameters.hh" #include using namespace std; #include "vesicle.h" extern "C" { #include "libSphere.h" } typedef struct { double scale; double radius; double thickness; double solv_sld; double shell_sld; double background; } VesicleParameters; VesicleModel :: VesicleModel() { scale = Parameter(1.0); radius = Parameter(100.0, true); radius.set_min(0.0); thickness = Parameter(30.0, true); thickness.set_min(0.0); solv_sld = Parameter(6.36e-6); shell_sld = Parameter(5.0e-7); background = Parameter(0.0); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double VesicleModel :: operator()(double q) { double dp[6]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = radius(); dp[2] = thickness(); dp[3] = solv_sld(); dp[4] = shell_sld(); dp[5] = 0.0; // Get the dispersion points for the core radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the thickness vector weights_thickness; thickness.get_weights(weights_thickness); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over radius weight points for(int i=0; i< (int)weights_radius.size(); i++) { dp[1] = weights_radius[i].value; for(int j=0; j< (int)weights_thickness.size(); j++) { dp[2] = weights_thickness[j].value; sum += weights_radius[i].weight * weights_thickness[j].weight * VesicleForm(dp, q) *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3)); //Find average volume vol += weights_radius[i].weight * weights_thickness[j].weight *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3)); norm += weights_radius[i].weight * weights_thickness[j].weight; } } if (vol != 0.0 && norm != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double VesicleModel :: operator()(double qx, double qy) { double q = sqrt(qx*qx + qy*qy); return (*this).operator()(q); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the vesicle * @param q: q-value * @param phi: angle phi * @return: function value */ double VesicleModel :: evaluate_rphi(double q, double phi) { return (*this).operator()(q); } /** * Function to calculate effective radius * @return: effective radius value */ double VesicleModel :: calculate_ER() { VesicleParameters dp; dp.radius = radius(); dp.thickness = thickness(); double rad_out = 0.0; // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Get the dispersion points for the major shell vector weights_thickness; thickness.get_weights(weights_thickness); // Get the dispersion points for the minor shell vector weights_radius ; radius.get_weights(weights_radius); // Loop over major shell weight points for(int j=0; j< (int)weights_thickness.size(); j++) { dp.thickness = weights_thickness[j].value; for(int k=0; k< (int)weights_radius.size(); k++) { dp.radius = weights_radius[k].value; sum += weights_thickness[j].weight * weights_radius[k].weight*(dp.radius+dp.thickness); norm += weights_thickness[j].weight* weights_radius[k].weight; } } if (norm != 0){ //return the averaged value rad_out = sum/norm;} else{ //return normal value rad_out = (dp.radius+dp.thickness);} return rad_out; } /** * Function to calculate volf_ratio for shell * @return: volf_ratio value */ double VesicleModel :: calculate_VR() { VesicleParameters dp; dp.radius = radius(); dp.thickness = thickness(); double rad_out = 0.0; // Perform the computation, with all weight points double sum_tot = 0.0; double sum_shell = 0.0; // Get the dispersion points for the major shell vector weights_thickness; thickness.get_weights(weights_thickness); // Get the dispersion points for the minor shell vector weights_radius ; radius.get_weights(weights_radius); // Loop over major shell weight points for(int j=0; j< (int)weights_thickness.size(); j++) { dp.thickness = weights_thickness[j].value; for(int k=0; k< (int)weights_radius.size(); k++) { dp.radius = weights_radius[k].value; sum_tot += weights_thickness[j].weight * weights_radius[k].weight*pow((dp.radius+dp.thickness), 3); sum_shell += weights_thickness[j].weight * weights_radius[k].weight*(pow((dp.radius+dp.thickness), 3) - pow((dp.radius), 3)); } } if (sum_tot == 0.0){ //return the default value rad_out = 1.0;} else{ //return ratio value return sum_shell/sum_tot; } }