source: sasview/src/sans/models/media/model_functions.rst @ a110e37f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since a110e37f was 6386cd8, checked in by smk78, 11 years ago

More updates by SMK

  • Property mode set to 100644
File size: 164.9 KB
RevLine 
[1c03e14]1.. model_functions.rst
2
3.. This is a port of the original SasView model_functions.html to ReSTructured text
[6386cd8]4.. by S King, ISIS, during and after SasView CodeCamp-II in April 2014.
5
6.. Thanks are due to A Jackson & P Kienzle for advice on RST!
7
8.. The CoreShellEllipsoidXTModel was ported and documented by R K Heenan, ISIS, Apr 2014
9.. The RectangularPrism models were coded and documented by M A Gonzalez, ILL, Apr 2014
10
11.. To do:
12.. Remove the 'This is xi' & 'This is zeta' lines before release!
13.. Add example parameters/plots for the CoreShellEllipsoidXTModel
14.. Add example parameters/plots for the RectangularPrism models
15.. Check the content against the NIST Igor Help File
16.. Wordsmith the content for consistency of style, etc
17
18
19
20.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
21
[1c03e14]22
23
24.. Set up some substitutions to make life easier...
25
26.. |alpha| unicode:: U+03B1
27.. |beta| unicode:: U+03B2
28.. |gamma| unicode:: U+03B3
29.. |delta| unicode:: U+03B4
30.. |epsilon| unicode:: U+03B5
31.. |zeta| unicode:: U+03B6
32.. |eta| unicode:: U+03B7
33.. |theta| unicode:: U+03B8
34.. |iota| unicode:: U+03B9
35.. |kappa| unicode:: U+03BA
36.. |lambda| unicode:: U+03BB
37.. |mu| unicode:: U+03BC
38.. |nu| unicode:: U+03BD
39.. |xi| unicode:: U+03BE
40.. |omicron| unicode:: U+03BF
41.. |pi| unicode:: U+03C0
42.. |rho| unicode:: U+03C1
43.. |sigma| unicode:: U+03C3
44.. |tau| unicode:: U+03C4
45.. |upsilon| unicode:: U+03C5
46.. |phi| unicode:: U+03C6
47.. |chi| unicode:: U+03C7
48.. |psi| unicode:: U+03C8
49.. |omega| unicode:: U+03C9
50.. |biggamma| unicode:: U+0393
[93b6fcc]51.. |bigdelta| unicode:: U+0394
52.. |bigzeta| unicode:: U+039E
[38d4102]53.. |bigpsi| unicode:: U+03A8
[1c03e14]54.. |drho| replace:: |bigdelta|\ |rho|
55.. |Ang| unicode:: U+212B
56.. |Ang^-1| replace:: |Ang|\ :sup:`-1`
57.. |Ang^2| replace:: |Ang|\ :sup:`2`
58.. |Ang^-2| replace:: |Ang|\ :sup:`-2`
59.. |Ang^3| replace:: |Ang|\ :sup:`3`
[58eccf6]60.. |Ang^-3| replace:: |Ang|\ :sup:`-3`
61.. |Ang^-4| replace:: |Ang|\ :sup:`-4`
[1c03e14]62.. |cm^-1| replace:: cm\ :sup:`-1`
63.. |cm^2| replace:: cm\ :sup:`2`
64.. |cm^-2| replace:: cm\ :sup:`-2`
65.. |cm^3| replace:: cm\ :sup:`3`
66.. |cm^-3| replace:: cm\ :sup:`-3`
67.. |sr^-1| replace:: sr\ :sup:`-1`
68.. |P0| replace:: P\ :sub:`0`\
69.. |A2| replace:: A\ :sub:`2`\
70
71
72
73.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
74
75
76
77.. Actual document starts here...
78
[93b6fcc]79This is xi, |xi|
80
81This is zeta, |zeta|
82
[6386cd8]83
84
[1c03e14]85SasView Model Functions
86=======================
87
88Contents
89--------
901. Introduction_
91
922. Model_ Functions
93
94 2.1 Shape-based_ Functions
95 2.2 Shape-independent_ Functions
96 2.3 Structure-factor_ Functions
97 2.4 Customised_ Functions
98
993. References_
100
101
102
103.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
104
105
106
107.. _Introduction:
108
1091. Introduction
110---------------
111
112Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
[6386cd8]113Research and thus some content and figures in this document are originated from or shared with the NIST SANS Igor-based
114analysis package.
[1c03e14]115
116This software provides form factors for various particle shapes. After giving a mathematical definition of each model,
117we show the list of parameters available to the user. Validation plots for each model are also presented.
118
119Instructions on how to use SasView itself are available separately.
120
121To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of
122the particle
123
124.. image:: img/image001.PNG
125
126with
127
128.. image:: img/image002.PNG
129
130where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given
131point in space and the integration is done over the volume *V* of the scatterer.
132
133For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity
134by the particle volume fraction
135
136.. image:: img/image003.PNG
137
138Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In
[6386cd8]139that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SAS
[1c03e14]140detector will have an azimuthal symmetry around *q*\ =0 .
141
142Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a
143q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal
144(x) axis of the plane of the detector.
145
146For information about polarised and magnetic scattering, click here_.
147
148.. _here: polar_mag_help.html
149
150
151
152.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
153
154
155
156.. _Model:
157
1582. Model functions
159------------------
160
161.. _Shape-based:
162
1632.1 Shape-based Functions
164-------------------------
165
166Sphere-based
167------------
168
169- SphereModel_ (including magnetic 2D version)
170- BinaryHSModel_
171- FuzzySphereModel_
172- RaspBerryModel_
173- CoreShellModel_ (including magnetic 2D version)
174- CoreMultiShellModel_ (including magnetic 2D version)
175- Core2ndMomentModel_
176- MultiShellModel_
177- OnionExpShellModel_
178- VesicleModel_
179- SphericalSLDModel_
180- LinearPearlsModel_
181- PearlNecklaceModel_
182
183Cylinder-based
184--------------
185
186- CylinderModel_ (including magnetic 2D version)
187- HollowCylinderModel_
[38d4102]188- CappedCylinderModel_
189- CoreShellCylinderModel_
190- EllipticalCylinderModel_
[77cfcf0]191- FlexibleCylinderModel_
192- FlexCylEllipXModel_
193- CoreShellBicelleModel_
194- BarBellModel_
195- StackedDisksModel_
196- PringleModel_
[1c03e14]197
198Ellipsoid-based
199---------------
200
[990c2eb]201- EllipsoidModel_
202- CoreShellEllipsoidModel_
203- CoreShellEllipsoidXTModel_
[bf8c07b]204- TriaxialEllipsoidModel_
[1c03e14]205
206Lamellae
207--------
208
[1127c32]209- LamellarModel_
210- LamellarFFHGModel_
211- LamellarPSModel_
212- LamellarPSHGModel_
[1c03e14]213
214Paracrystals
215------------
216
[1127c32]217- LamellarPCrystalModel_
[d4117ccb]218- SCCrystalModel_
219- FCCrystalModel_
220- BCCrystalModel_
[1c03e14]221
222Parallelpipeds
223--------------
224
[bf8c07b]225- ParallelepipedModel_ (including magnetic 2D version)
226- CSParallelepipedModel_
[6386cd8]227- RectangularPrismModel_
228- RectangularHollowPrismModel_
229- RectangularHollowPrismInfThinWallsModel_
[1c03e14]230
231.. _Shape-independent:
232
2332.2 Shape-Independent Functions
234-------------------------------
235
[6386cd8]236(In alphabetical order)
237
[4ed2d0a1]238- AbsolutePower_Law_
[93b6fcc]239- BEPolyelectrolyte_
240- BroadPeakModel_
241- CorrLength_
242- DABModel_
243- Debye_
244- FractalModel_
245- FractalCoreShell_
246- GaussLorentzGel_
[6386cd8]247- GelFitModel_
[93b6fcc]248- Guinier_
249- GuinierPorod_
[6386cd8]250- LineModel_
[93b6fcc]251- Lorentz_
252- MassFractalModel_
253- MassSurfaceFractal_
[6386cd8]254- PeakGaussModel_
255- PeakLorentzModel_
256- Poly_GaussCoil_
257- PolyExclVolume_
258- PorodModel_
259- RPA10Model_
260- StarPolymer_
[93b6fcc]261- SurfaceFractalModel_
262- TeubnerStrey_
[6386cd8]263- TwoLorentzian_
264- TwoPowerLaw_
265- UnifiedPowerRg_
266- ReflectivityModel_
267- ReflectivityIIModel_
[1c03e14]268
269.. _Structure-factor:
270
2712.3 Structure Factor Functions
272------------------------------
273
274- HardSphereStructure_
275- SquareWellStructure_
276- HayterMSAStructure_
277- StickyHSStructure_
278
279.. _Customised:
280
2812.4 Customized Functions
282------------------------
283
284- testmodel_
285- testmodel_2_
286- sum_p1_p2_
287- sum_Ap1_1_Ap2_
288- polynomial5_
289- sph_bessel_jn_
290
291
292
293.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
294
295
296
297.. _References:
298
2993. References
300-------------
301
302*Small-Angle Scattering of X-Rays*
[93b6fcc]303A Guinier and G Fournet
[1c03e14]304John Wiley & Sons, New York (1955)
305
[93b6fcc]306P Stckel, R May, I Strell, Z Cejka, W Hoppe, H Heumann, W Zillig and H Crespi
[1c03e14]307*Eur. J. Biochem.*, 112, (1980), 411-417
308
[93b6fcc]309G Porod
[1c03e14]310in *Small Angle X-ray Scattering*
[93b6fcc]311(editors) O Glatter and O Kratky
[1c03e14]312Academic Press (1982)
313
314*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*
[93b6fcc]315L.A Feigin and D I Svergun
[1c03e14]316Plenum Press, New York (1987)
317
[93b6fcc]318S Hansen
[1c03e14]319*J. Appl. Cryst.* 23, (1990), 344-346
320
[93b6fcc]321S J Henderson
[1c03e14]322*Biophys. J.* 70, (1996), 1618-1627
323
[93b6fcc]324B C McAlister and B P Grady
[1c03e14]325*J. Appl. Cryst.* 31, (1998), 594-599
326
[93b6fcc]327S R Kline
[1c03e14]328*J Appl. Cryst.* 39(6), (2006), 895
329
330**Also see the references at the end of the each model function descriptions.**
331
332
333
334.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
335
336
337
338Model Definitions
339-----------------
340
341.. _SphereModel:
342
343**2.1.1. SphereModel**
344
345This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length
346density. The form factor is normalized by the particle volume as described below.
347
348For information about polarised and magnetic scattering, click here_.
349
350.. _here: polar_mag_help.html
351
352*2.1.1.1. Definition*
353
354The 1D scattering intensity is calculated in the following way (Guinier, 1955)
355
356.. image:: img/image004.PNG
357
358where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is
359the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent.
360
361Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if
362you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be
363rescaled).
364
365The 2D scattering intensity is the same as above, regardless of the orientation of the q vector.
366
367The returned value is scaled to units of |cm^-1| and the parameters of the SphereModel are the following:
368
369==============  ========  =============
370Parameter name  Units     Default value
371==============  ========  =============
372scale           None      1
373radius          |Ang|     60
374sldSph          |Ang^-2|  2.0e-6
375sldSolv         |Ang^-2|  1.0e-6
376background      |cm^-1|   0
377==============  ========  =============
378
379Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
380Research (Kline, 2006).
381
382REFERENCE
[bf8c07b]383
[93b6fcc]384A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]385
386*2.1.1.2. Validation of the SphereModel*
387
388Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
389NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
390
391.. image:: img/image005.JPG
392
393Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software.
394The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|.
395
[93b6fcc]396*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
[1c03e14]397
398
399
400.. _BinaryHSModel:
401
402**2.1.2. BinaryHSModel**
403
404*2.1.2.1. Definition*
405
406This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard
407sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component
408solution
409
410.. image:: img/image006.PNG
411
412where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1
413is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2),
414where *n* = the number density) is internally calculated based on
415
416.. image:: img/image007.PNG
417
418The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
419
420.. image:: img/image008.PNG
421
422The parameters of the BinaryHSModel are the following (in the names, *l* (or *ls*\ ) stands for larger spheres
423while *s* (or *ss*\ ) for the smaller spheres).
424
425==============  ========  =============
426Parameter name  Units     Default value
427==============  ========  =============
428background      |cm^-1|   0.001
429l_radius        |Ang|     100.0
430ss_sld          |Ang^-2|  0.0
431ls_sld          |Ang^-2|  3e-6
432solvent_sld     |Ang^-2|  6e-6
433s_radius        |Ang|     25.0
434vol_frac_ls     None      0.1
435vol_frac_ss     None      0.2
436==============  ========  =============
437
438.. image:: img/image009.JPG
439
440*Figure. 1D plot using the default values above (w/200 data point).*
441
442Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
443Research (Kline, 2006).
444
445See the reference for details.
446
447REFERENCE
[bf8c07b]448
[93b6fcc]449N W Ashcroft and D C Langreth, *Physical Review*, 156 (1967) 685-692
[1c03e14]450[Errata found in *Phys. Rev.* 166 (1968) 934]
451
452
453
454.. _FuzzySphereModel:
455
456**2.1.3. FuzzySphereModel**
457
458This model is to calculate the scattering from spherical particles with a "fuzzy" interface.
459
460*2.1.3.1. Definition*
461
462The scattering intensity *I(q)* is calculated as:
463
464.. image:: img/image010.PNG
465
466where the amplitude *A(q)* is given as the typical sphere scattering convoluted with a Gaussian to get a gradual
467drop-off in the scattering length density
468
469.. image:: img/image011.PNG
470
471Here |A2|\ *(q)* is the form factor, *P(q)*. The scale is equivalent to the volume fraction of spheres, each of
472volume, *V*\. Contrast (|drho|) is the difference of scattering length densities of the sphere and the surrounding
473solvent.
474
475Poly-dispersion in radius and in fuzziness is provided for.
476
477The returned value is scaled to units of |cm^-1|\ |sr^-1|; ie, absolute scale.
478
479From the reference
480
481  The "fuzziness" of the interface is defined by the parameter |sigma| :sub:`fuzzy`\ . The particle radius *R*
482  represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core
483  density. The |sigma| :sub:`fuzzy`\ is the width of the smeared particle surface; i.e., the standard deviation
484  from the average height of the fuzzy interface. The inner regions of the microgel that display a higher density
485  are described by the radial box profile extending to a radius of approximately *Rbox* ~ *R* - 2\ |sigma|\ . The
486  profile approaches zero as *Rsans* ~ *R* + 2\ |sigma|\ .
487
488For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
489
490.. image:: img/image008.PNG
491
492This example dataset is produced by running the FuzzySphereModel, using 200 data points, *qmin* = 0.001 -1,
493*qmax* = 0.7 |Ang^-1| and the default values
494
495==============  ========  =============
496Parameter name  Units     Default value
497==============  ========  =============
498scale           None      1.0
499radius          |Ang|     60
500fuzziness       |Ang|     10
501sldSolv         |Ang^-2|  3e-6
502sldSph          |Ang^-2|  1e-6
503background      |cm^-1|   0.001
504==============  ========  =============
505
506.. image:: img/image012.JPG
507
508*Figure. 1D plot using the default values (w/200 data point).*
509
510REFERENCE
[bf8c07b]511
[93b6fcc]512M Stieger, J. S Pedersen, P Lindner, W Richtering, *Langmuir*, 20 (2004) 7283-7292
[1c03e14]513
514
515
516.. _RaspBerryModel:
517
518**2.1.4. RaspBerryModel**
519
520Calculates the form factor, *P(q)*, for a "Raspberry-like" structure where there are smaller spheres at the surface
521of a larger sphere, such as the structure of a Pickering emulsion.
522
523*2.1.4.1. Definition*
524
525The structure is:
526
527.. image:: img/raspberry_pic.JPG
528
529where *Ro* = the radius of the large sphere, *Rp* = the radius of the smaller sphere on the surface, |delta| = the
530fractional penetration depth, and surface coverage = fractional coverage of the large sphere surface (0.9 max).
531
532The large and small spheres have their own SLD, as well as the solvent. The surface coverage term is a fractional
533coverage (maximum of approximately 0.9 for hexagonally-packed spheres on a surface). Since not all of the small
534spheres are necessarily attached to the surface, the excess free (small) spheres scattering is also included in the
535calculation. The function calculated follows equations (8)-(12) of the reference below, and the equations are not
536reproduced here.
537
538The returned value is scaled to units of |cm^-1|. No inter-particle scattering is included in this model.
539
540For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
541
542.. image:: img/image008.PNG
543
544This example dataset is produced by running the RaspBerryModel, using 2000 data points, *qmin* = 0.0001 |Ang^-1|,
545*qmax* = 0.2 |Ang^-1| and the default values below, where *Ssph/Lsph* stands for smaller or larger sphere, respectively,
546and *surfrac_Ssph* is the surface fraction of the smaller spheres.
547
548==============  ========  =============
549Parameter name  Units     Default value
550==============  ========  =============
551delta_Ssph      None      0
552radius_Lsph     |Ang|     5000
553radius_Ssph     |Ang|     100
554sld_Lsph        |Ang^-2|  -4e-07
555sld_Ssph        |Ang^-2|  3.5e-6
556sld_solv        |Ang^-2|  6.3e-6
557surfrac_Ssph    None      0.4
558volf_Lsph       None      0.05
559volf_Lsph       None      0.005
560background      |cm^-1|   0
561==============  ========  =============
562
563.. image:: img/raspberry_plot.JPG
564
565*Figure. 1D plot using the values of /2000 data points.*
566
567REFERENCE
[bf8c07b]568
[93b6fcc]569K Larson-Smith, A Jackson, and D C Pozzo, *Small angle scattering model for Pickering emulsions and raspberry*
[1c03e14]570*particles*, *Journal of Colloid and Interface Science*, 343(1) (2010) 36-41
571
572
573
574.. _CoreShellModel:
575
576**2.1.5. CoreShellModel**
577
578This model provides the form factor, *P(q)*, for a spherical particle with a core-shell structure. The form factor is
579normalized by the particle volume.
580
581For information about polarised and magnetic scattering, click here_.
582
583*2.1.5.1. Definition*
584
585The 1D scattering intensity is calculated in the following way (Guinier, 1955)
586
587.. image:: img/image013.PNG
588
589where *scale* is a scale factor, *Vs* is the volume of the outer shell, *Vc* is the volume of the core, *rs* is the
590radius of the shell, *rc* is the radius of the core, *c* is the scattering length density of the core, *s* is the
591scattering length density of the shell, *solv* is the scattering length density of the solvent, and *bkg* is the
592background level.
593
594The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
595
596NB: The outer most radius (ie, = *radius* + *thickness*) is used as the effective radius for *S(Q)* when
597*P(Q)* \* *S(Q)* is applied.
598
599The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellModel are the following
600
601==============  ========  =============
602Parameter name  Units     Default value
603==============  ========  =============
604scale           None      1.0
605(core) radius   |Ang|     60
606thickness       |Ang|     10
607core_sld        |Ang^-2|  1e-6
608shell_sld       |Ang^-2|  2e-6
609solvent_sld     |Ang^-2|  3e-6
610background      |cm^-1|   0.001
611==============  ========  =============
612
613Here, *radius* = the radius of the core and *thickness* = the thickness of the shell.
614
615Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
616Research (Kline, 2006).
617
618REFERENCE
[bf8c07b]619
[93b6fcc]620A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]621
622*2.1.5.2. Validation of the core-shell sphere model*
623
624Validation of our code was done by comparing the output of the 1D model to the output of the software provided by
625NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
626
627.. image:: img/image014.JPG
628
629Figure 1: Comparison of the SasView scattering intensity for a core-shell sphere with the output of the NIST SANS
630analysis software. The parameters were set to: *Scale* = 1.0, *Radius* = 60 , *Contrast* = 1e-6 |Ang^-2|, and
631*Background* = 0.001 |cm^-1|.
632
633
634
635.. _CoreMultiShellModel:
636
637**2.1.6. CoreMultiShellModel**
638
639This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the core
640and each shell are individually specified.
641
642For information about polarised and magnetic scattering, click here_.
643
644*2.1.6.1. Definition*
645
646This model is a trivial extension of the CoreShell function to a larger number of shells. See the CoreShell function
647for a diagram and documentation.
648
[77cfcf0]649The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]650
651Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as possible.
652
653The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q vector.
654
655NB: The outer most radius (ie, = *radius* + 4 *thicknesses*) is used as the effective radius for *S(Q)* when
656*P(Q)* \* *S(Q)* is applied.
657
658The returned value is scaled to units of |cm^-1| and the parameters of the CoreMultiShell model are the following
659
660==============  ========  =============
661Parameter name  Units     Default value
662==============  ========  =============
663scale           None      1.0
664rad_core        |Ang|     60
665sld_core        |Ang^-2|  6.4e-6
666sld_shell1      |Ang^-2|  1e-6
667sld_shell2      |Ang^-2|  2e-6
668sld_shell3      |Ang^-2|  3e-6
669sld_shell4      |Ang^-2|  4e-6
670sld_solv        |Ang^-2|  6.4e-6
671thick_shell1    |Ang|     10
672thick_shell2    |Ang|     10
673thick_shell3    |Ang|     10
674thick_shell4    |Ang|     10
675background      |cm^-1|   0.001
676==============  ========  =============
677
678NB: Here, *rad_core* = the radius of the core, *thick_shelli* = the thickness of the shell *i* and
679*sld_shelli* = the SLD of the shell *i*. *sld_core* and the *sld_solv* are the SLD of the core and the solvent,
680respectively.
681
682Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
683Research (Kline, 2006).
684
685This example dataset is produced by running the CoreMultiShellModel using 200 data points, *qmin* = 0.001 -1,
686*qmax* = 0.7 -1 and the above default values.
687
688.. image:: img/image015.JPG
689
690*Figure: 1D plot using the default values (w/200 data point).*
691
692The scattering length density profile for the default sld values (w/ 4 shells).
693
694.. image:: img/image016.JPG
695
696*Figure: SLD profile against the radius of the sphere for default SLDs.*
697
698REFERENCE
[bf8c07b]699
700See the CoreShellModel_ documentation.
[1c03e14]701
702
703
704.. _Core2ndMomentModel:
705
706**2.1.7. Core2ndMomentModel**
707
708This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical particles under the
709conditions that (i) the particles (cores) are contrast-matched to the dispersion medium, (ii) *S(Q)* ~ 1 (ie, the
710particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the interface is locally
711flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has been corrected for.
712
713Unlike a core-shell model, this model does not assume any form for the density distribution of the adsorbed species
714normal to the interface (cf, a core-shell model which assumes the density distribution to be a homogeneous
715step-function). For comparison, if the thickness of a (core-shell like) step function distribution is *t*, the second
716moment, |sigma| = sqrt((*t* :sup:`2` )/12). The |sigma| is the second moment about the mean of the density distribution
717(ie, the distance of the centre-of-mass of the distribution from the interface).
718
719*2.1.7.1. Definition*
720
721The *I* :sub:`0` is calculated in the following way (King, 2002)
722
723.. image:: img/secondmeq1.JPG
724
725where *scale* is a scale factor, *poly* is the sld of the polymer (or surfactant) layer, *solv* is the sld of the
726solvent/medium and cores, |phi|\ :sub:`cores` is the volume fraction of the core paraticles, and |biggamma| and
727|delta| are the adsorbed amount and the bulk density of the polymers respectively. The |sigma| is the second moment
728of the thickness distribution.
729
730Note that all parameters except the |sigma| are correlated for fitting so that fitting those with more than one
731parameter will generally fail. Also note that unlike other shape models, no volume normalization is applied to this
732model (the calculation is exact).
733
734The returned value is scaled to units of |cm^-1| and the parameters are the following
735
736==============  ========  =============
737Parameter name  Units     Default value
738==============  ========  =============
739scale           None      1.0
740density_poly    g/cm2     0.7
741radius_core     |Ang|     500
742ads_amount      mg/m 2    1.9
743second_moment   |Ang|     23.0
744volf_cores      None      0.14
745sld_poly        |Ang^-2|  1.5e-6
746sld_solv        |Ang^-2|  6.3e-6
747background      |cm^-1|   0.0
748==============  ========  =============
749
750.. image:: img/secongm_fig1.JPG
751
752REFERENCE
[bf8c07b]753
[93b6fcc]754S King, P Griffiths, J. Hone, and T Cosgrove, *SANS from Adsorbed Polymer Layers*,
[1c03e14]755*Macromol. Symp.*, 190 (2002) 33-42
756
757
758
759.. _MultiShellModel:
760
761**2.1.8. MultiShellModel**
762
763This model provides the form factor, *P(q)*, for a multi-lamellar vesicle with *N* shells where the core is filled with
764solvent and the shells are interleaved with layers of solvent. For *N* = 1, this returns the VesicleModel (above).
765
766.. image:: img/image020.JPG
767
768The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
769
770.. image:: img/image008.PNG
771
772NB: The outer most radius (= *core_radius* + *n_pairs* \* *s_thickness* + (*n_pairs* - 1) \* *w_thickness*) is used
773as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
774
775The returned value is scaled to units of |cm^-1| and the parameters of the MultiShellModel are the following
776
777==============  ========  =============
778Parameter name  Units     Default value
779==============  ========  =============
780scale           None      1.0
781core_radius     |Ang|     60.0
782n_pairs         None      2.0
783core_sld        |Ang^-2|  6.3e-6
784shell_sld       |Ang^-2|  0.0
785background      |cm^-1|   0.0
786s_thickness     |Ang|     10
787w_thickness     |Ang|     10
788==============  ========  =============
789
790NB: *s_thickness* is the shell thickness while the *w_thickness* is the solvent thickness, and *n_pair*
791is the number of shells.
792
793.. image:: img/image021.JPG
794
795*Figure. 1D plot using the default values (w/200 data point).*
796
797Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
798Research (Kline, 2006).
799
800REFERENCE
[bf8c07b]801
[93b6fcc]802B Cabane, *Small Angle Scattering Methods*, in *Surfactant Solutions: New Methods of Investigation*, Ch.2,
803Surfactant Science Series Vol. 22, Ed. R Zana and M Dekker, New York, (1987).
[1c03e14]804
805
806
807.. _OnionExpShellModel:
808
809**2.1.9. OnionExpShellModel**
810
811This model provides the form factor, *P(q)*, for a multi-shell sphere where the scattering length density (SLD) of the
812each shell is described by an exponential (linear, or flat-top) function. The form factor is normalized by the volume
813of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells with this
814model.
815
816*2.1.9.1. Definition*
817
818The 1D scattering intensity is calculated in the following way
819
820.. image:: img/image022.GIF
821
822.. image:: img/image023.GIF
823
824where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
825
826.. image:: img/image024.GIF
827
828so that
829
830.. image:: img/image025.GIF
831
832.. image:: img/image026.GIF
833
834.. image:: img/image027.GIF
835
836Here we assumed that the SLDs of the core and solvent are constant against *r*.
837
838Now lets consider the SLD of a shell, *r*\ :sub:`shelli`, defined by
839
840.. image:: img/image028.GIF
841
842An example of a possible SLD profile is shown below where *sld_in_shelli* (|rho|\ :sub:`in`\ ) and
843*thick_shelli* (|bigdelta|\ *t* :sub:`shelli`\ ) stand for the SLD of the inner side of the *i*\ th shell and the
844thickness of the *i*\ th shell in the equation above, respectively.
845
846For \| *A* \| > 0,
847
848.. image:: img/image029.GIF
849
850For *A* ~ 0 (eg., *A* = -0.0001), this function converges to that of the linear SLD profile (ie,
851|rho|\ :sub:`shelli`\ *(r)* = *A*\ :sup:`'` ( *r* - *r*\ :sub:`shelli` - 1) / |bigdelta|\ *t* :sub:`shelli`) + *B*\ :sup:`'`),
852so this case is equivalent to
853
854.. image:: img/image030.GIF
855
856.. image:: img/image031.GIF
857
858.. image:: img/image032.GIF
859
860.. image:: img/image033.GIF
861
862For *A* = 0, the exponential function has no dependence on the radius (so that *sld_out_shell* (|rho|\ :sub:`out`) is
863ignored this case) and becomes flat. We set the constant to |rho|\ :sub:`in` for convenience, and thus the form
864factor contributed by the shells is
865
866.. image:: img/image034.GIF
867
868.. image:: img/image035.GIF
869
870In the equation
871
872.. image:: img/image036.GIF
873
874Finally, the form factor can be calculated by
875
876.. image:: img/image037.GIF
877
878where
879
880.. image:: img/image038.GIF
881
882and
883
884.. image:: img/image039.GIF
885
886The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
887defined as
888
889.. image:: img/image040.GIF
890
891NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
892
893The returned value is scaled to units of |cm^-1| and the parameters of this model (for only one shell) are the following
894
895==============  ========  =============
896Parameter name  Units     Default value
897==============  ========  =============
898A_shell1        None      1
899scale           None      1.0
900rad_core        |Ang|     200
901thick_shell1    |Ang|     50
902sld_core        |Ang^-2|  1.0e-06
903sld_in_shell1   |Ang^-2|  1.7e-06
904sld_out_shell1  |Ang^-2|  2.0e-06
905sld_solv        |Ang^-2|  6.4e-06
906background      |cm^-1|   0.0
907==============  ========  =============
908
909NB: *rad_core* represents the core radius (*R1*) and *thick_shell1* (*R2* - *R1*) is the thickness of the shell1, etc.
910
911.. image:: img/image041.JPG
912
913*Figure. 1D plot using the default values (w/400 point).*
914
915.. image:: img/image042.JPG
916
917*Figure. SLD profile from the default values.*
918
919REFERENCE
[bf8c07b]920
[93b6fcc]921L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]922Plenum Press, New York, (1987).
923
924
925
926.. _VesicleModel:
927
928**2.1.10. VesicleModel**
929
930This model provides the form factor, *P(q)*, for an unilamellar vesicle. The form factor is normalized by the volume
931of the shell.
932
933*2.1.10.1. Definition*
934
935The 1D scattering intensity is calculated in the following way (Guinier, 1955)
936
937.. image:: img/image017.PNG
938
939where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total
940volume, *R1* is the radius of the core, *R2* is the outer radius of the shell, |rho|\ :sub:`1` is the scattering
941length density of the core and the solvent, |rho|\ :sub:`2` is the scattering length density of the shell, *bkg* is
942the background level, and *J1* = (sin\ *x*- *x* cos\ *x*)/ *x* :sup:`2`\ . The functional form is identical to a
943"typical" core-shell structure, except that the scattering is normalized by the volume that is contributing to the
944scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of a core radius (= *R1*)
945and a shell thickness, *t*.
946
947.. image:: img/image018.JPG
948
949The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
950defined as
951
952.. image:: img/image008.PNG
953
954NB: The outer most radius (= *radius* + *thickness*) is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)*
955is applied.
956
957The returned value is scaled to units of |cm^-1| and the parameters of the VesicleModel are the following
958
959==============  ========  =============
960Parameter name  Units     Default value
961==============  ========  =============
962scale           None      1.0
963radius          |Ang|     100
964thickness       |Ang|     30
965core_sld        |Ang^-2|  6.3e-6
966shell_sld       |Ang^-2|  0
967background      |cm^-1|   0.0
968==============  ========  =============
969
970NB: *radius* represents the core radius (*R1*) and the *thickness* (*R2* - *R1*) is the shell thickness.
971
972.. image:: img/image019.JPG
973
974*Figure. 1D plot using the default values (w/200 data point).*
975
976Our model uses the form factor calculations implemented in a c-library
977provided by the NIST Center for Neutron Research (Kline, 2006).
978
979REFERENCE
[bf8c07b]980
[93b6fcc]981A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
[1c03e14]982
983
984
985.. _SphericalSLDModel:
986
987**2.1.11. SphericalSLDModel**
988
989Similarly to the OnionExpShellModel, this model provides the form factor, *P(q)*, for a multi-shell sphere, where the
990interface between the each neighboring shells can be described by one of a number of functions including error,
991power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous
992custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent,
993a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent)
994(see below). Unlike the OnionExpShellModel (using an analytical integration), the interfacial layers here are
995sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number
996of the sub-layer can be given by users by setting the integer values of *npts_inter* in the GUI. The form factor is
997normalized by the total volume of the sphere.
998
999*2.1.11.1. Definition*
1000
1001The 1D scattering intensity is calculated in the following way:
1002
1003.. image:: img/image022.GIF
1004
1005.. image:: img/image043.GIF
1006
1007where, for a spherically symmetric particle with a particle density |rho|\ *(r)*
1008
1009.. image:: img/image024.GIF
1010
1011so that
1012
1013.. image:: img/image044.GIF
1014
1015.. image:: img/image045.GIF
1016
1017.. image:: img/image046.GIF
1018
1019.. image:: img/image047.GIF
1020
1021.. image:: img/image048.GIF
1022
1023.. image:: img/image027.GIF
1024
1025Here we assumed that the SLDs of the core and solvent are constant against *r*. The SLD at the interface between
1026shells, |rho|\ :sub:`inter_i`, is calculated with a function chosen by an user, where the functions are
1027
10281) Exp
1029
1030.. image:: img/image049.GIF
1031
10322) Power-Law
1033
1034.. image:: img/image050.GIF
1035
10363) Erf
1037
1038.. image:: img/image051.GIF
1039
1040The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is
1041continuous at the boundaries of the interface as well as each sub-layers. Thus *B* and *C* are determined.
1042
1043Once |rho|\ :sub:`rinter_i` is found at the boundary of the sub-layer of the interface, we can find its contribution
1044to the form factor *P(q)*
1045
1046.. image:: img/image052.GIF
1047
1048.. image:: img/image053.GIF
1049
1050.. image:: img/image054.GIF
1051
1052where we assume that |rho|\ :sub:`inter_i`\ *(r)* can be approximately linear within a sub-layer *j*.
1053
1054In the equation
1055
1056.. image:: img/image055.GIF
1057
1058Finally, the form factor can be calculated by
1059
1060.. image:: img/image037.GIF
1061
1062where
1063
1064.. image:: img/image038.GIF
1065
1066and
1067
1068.. image:: img/image056.GIF
1069
1070The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector which is
1071defined as
1072
1073.. image:: img/image040.GIF
1074
1075NB: The outer most radius is used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1076
1077The returned value is scaled to units of |cm^-1| and the parameters of this model (for just one shell) are the following
1078
1079==============  ========  =============
1080Parameter name  Units     Default value
1081==============  ========  =============
1082background      |cm^-1|   0.0
1083npts_inter      None      35
1084scale           None      1
1085sld_solv        |Ang^-2|  1e-006
1086func_inter1     None      Erf
1087nu_inter        None      2.5
1088thick_inter1    |Ang|     50
1089sld_flat1       |Ang^-2|  4e-006
1090thick_flat1     |Ang|     100
1091func_inter0     None      Erf
1092nu_inter0       None      2.5
1093rad_core0       |Ang|     50
1094sld_core0       |Ang^-2|  2.07e-06
1095thick_core0     |Ang|     50
1096==============  ========  =============
1097
1098NB: *rad_core0* represents the core radius (*R1*).
1099
1100.. image:: img/image057.JPG
1101
1102*Figure. 1D plot using the default values (w/400 point).*
1103
1104.. image:: img/image058.JPG
1105
1106*Figure. SLD profile from the default values.*
1107
1108REFERENCE
[bf8c07b]1109
[93b6fcc]1110L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
[1c03e14]1111Plenum Press, New York, (1987)
1112
1113
1114
1115.. _LinearPearlsModel:
1116
1117**2.1.12. LinearPearlsModel**
1118
1119This model provides the form factor for *N* spherical pearls of radius *R* linearly joined by short strings (or segment
1120length or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. The thickness
1121of each string is assumed to be negligible.
1122
1123.. image:: img/linearpearls.jpg
1124
1125*2.1.12.1. Definition*
1126
1127The output of the scattering intensity function for the LinearPearlsModel is given by (Dobrynin, 1996)
1128
1129.. image:: img/linearpearl_eq1.gif
1130
1131where the mass *m*\ :sub:`p` is (SLD\ :sub:`pearl` - SLD\ :sub:`solvent`) \* (volume of *N* pearls). V is the total
1132volume.
1133
1134The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1135
1136The returned value is scaled to units of |cm^-1| and the parameters of the LinearPearlsModel are the following
1137
1138===============  ========  =============
1139Parameter name   Units     Default value
1140===============  ========  =============
1141scale            None      1.0
1142radius           |Ang|     80.0
1143edge_separation  |Ang|     350.0
1144num_pearls       None      3
1145sld_pearl        |Ang^-2|  1e-6
1146sld_solv         |Ang^-2|  6.3e-6
1147background       |cm^-1|   0.0
1148===============  ========  =============
1149
1150NB: *num_pearls* must be an integer.
1151
1152.. image:: img/linearpearl_plot.jpg
1153
1154REFERENCE
[bf8c07b]1155
[93b6fcc]1156A V Dobrynin, M Rubinstein and S P Obukhov, *Macromol.*, 29 (1996) 2974-2979
[1c03e14]1157
1158
1159
1160.. _PearlNecklaceModel:
1161
1162**2.1.13. PearlNecklaceModel**
1163
1164This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres
1165of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`,
1166and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation
1167distance.
1168
1169.. image:: img/pearl_fig.jpg
1170
1171*2.1.13.1. Definition*
1172
1173The output of the scattering intensity function for the PearlNecklaceModel is given by (Schweins, 2004)
1174
1175.. image:: img/pearl_eq1.gif
1176
1177where
1178
1179.. image:: img/pearl_eq2.gif
1180
1181.. image:: img/pearl_eq3.gif
1182
1183.. image:: img/pearl_eq4.gif
1184
1185.. image:: img/pearl_eq5.gif
1186
1187.. image:: img/pearl_eq6.gif
1188
1189and
1190
1191.. image:: img/pearl_eq7.gif
1192
1193where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the
1194total volume of the necklace.
1195
1196The 2D scattering intensity is the same as *P(q)* above, regardless of the orientation of the *q* vector.
1197
1198The returned value is scaled to units of |cm^-1| and the parameters of the PearlNecklaceModel are the following
1199
1200===============  ========  =============
1201Parameter name   Units     Default value
1202===============  ========  =============
1203scale            None      1.0
1204radius           |Ang|     80.0
1205edge_separation  |Ang|     350.0
1206num_pearls       None      3
1207sld_pearl        |Ang^-2|  1e-6
1208sld_solv         |Ang^-2|  6.3e-6
1209sld_string       |Ang^-2|  1e-6
1210thick_string
1211(=rod diameter)  |Ang|     2.5
1212background       |cm^-1|   0.0
1213===============  ========  =============
1214
1215NB: *num_pearls* must be an integer.
1216
1217.. image:: img/pearl_plot.jpg
1218
1219REFERENCE
[bf8c07b]1220
[93b6fcc]1221R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004
[1c03e14]1222
1223
1224
1225.. _CylinderModel:
1226
1227**2.1.14. CylinderModel**
1228
1229This model provides the form factor for a right circular cylinder with uniform scattering length density. The form
1230factor is normalized by the particle volume.
1231
1232For information about polarised and magnetic scattering, click here_.
1233
1234*2.1.14.1. Definition*
1235
1236The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 1955)
1237
1238.. image:: img/image059.PNG
1239
1240where
1241
1242.. image:: img/image060.PNG
1243
1244and |alpha| is the angle between the axis of the cylinder and the *q*-vector, *V* is the volume of the cylinder,
[58eccf6]1245*L* is the length of the cylinder, *r* is the radius of the cylinder, and |drho| (contrast) is the
[1c03e14]1246scattering length density difference between the scatterer and the solvent. *J1* is the first order Bessel function.
1247
1248To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using two angles |theta|
1249and |phi|. Those angles are defined in Figure 1.
1250
1251.. image:: img/image061.JPG
1252
1253*Figure 1. Definition of the angles for oriented cylinders.*
1254
1255.. image:: img/image062.JPG
1256
1257*Figure 2. Examples of the angles for oriented pp against the detector plane.*
1258
1259NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and length values, and used as the
1260effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1261
1262The returned value is scaled to units of |cm^-1| and the parameters of the CylinderModel are the following:
1263
1264==============  ========  =============
1265Parameter name  Units     Default value
1266==============  ========  =============
1267scale           None      1.0
1268radius          |Ang|     20.0
1269length          |Ang|     400.0
1270contrast        |Ang^-2|  3.0e-6
1271background      |cm^-1|   0.0
1272cyl_theta       degree    60
1273cyl_phi         degree    60
1274==============  ========  =============
1275
1276The output of the 1D scattering intensity function for randomly oriented cylinders is then given by
1277
1278.. image:: img/image063.PNG
1279
1280The *cyl_theta* and *cyl_phi* parameter are not used for the 1D output. Our implementation of the scattering kernel
1281and the 1D scattering intensity use the c-library from NIST.
1282
[38d4102]1283*2.1.14.2. Validation of the CylinderModel*
[1c03e14]1284
1285Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1286NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of our model and the output of the NIST software.
1287
1288.. image:: img/image065.JPG
1289
[38d4102]1290*Figure 3: Comparison of the SasView scattering intensity for a cylinder with the output of the NIST SANS analysis*
1291*software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Length* = 400 |Ang|,
[1c03e14]1292*Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.01 |cm^-1|.
1293
1294In general, averaging over a distribution of orientations is done by evaluating the following
1295
1296.. image:: img/image064.PNG
1297
1298where *p(*\ |theta|,\ |phi|\ *)* is the probability distribution for the orientation and |P0|\ *(q,*\ |alpha|\ *)* is
1299the scattering intensity for the fully oriented system. Since we have no other software to compare the implementation
1300of the intensity for fully oriented cylinders, we can compare the result of averaging our 2D output using a uniform
1301distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 4 shows the result of such a cross-check.
1302
1303.. image:: img/image066.JPG
1304
[38d4102]1305*Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D model and the*
1306*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1307*Length* = 400 |Ang|, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1308
1309
1310
1311.. _HollowCylinderModel:
1312
1313**2.1.15. HollowCylinderModel**
1314
1315This model provides the form factor, *P(q)*, for a monodisperse hollow right angle circular cylinder (tube) where the
1316form factor is normalized by the volume of the tube
1317
1318*P(q)* = *scale* \* *<F*\ :sup:`2`\ *>* / *V*\ :sub:`shell` + *background*
1319
1320where the averaging < > is applied only for the 1D calculation.
1321
1322The inside and outside of the hollow cylinder are assumed have the same SLD.
1323
[38d4102]1324*2.1.15.1 Definition*
1325
[1c03e14]1326The 1D scattering intensity is calculated in the following way (Guinier, 1955)
1327
1328.. image:: img/image072.PNG
1329
1330where *scale* is a scale factor, *J1* is the 1st order Bessel function, *J1(x)* = (sin *x* - *x* cos *x*)/ *x*\ :sup:`2`.
1331
1332To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1333angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
1334
1335NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1336effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
1337
1338In the parameters, the contrast represents SLD :sub:`shell` - SLD :sub:`solvent` and the *radius* = *R*\ :sub:`shell`
1339while *core_radius* = *R*\ :sub:`core`.
1340
1341==============  ========  =============
1342Parameter name  Units     Default value
1343==============  ========  =============
1344scale           None      1.0
1345radius          |Ang|     30
1346length          |Ang|     400
1347core_radius     |Ang|     20
1348sldCyl          |Ang^-2|  6.3e-6
1349sldSolv         |Ang^-2|  5e-06
1350background      |cm^-1|   0.01
1351==============  ========  =============
1352
1353.. image:: img/image074.JPG
1354
1355*Figure. 1D plot using the default values (w/1000 data point).*
1356
1357Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1358(Kline, 2006).
1359
1360.. image:: img/image061.JPG
1361
[38d4102]1362*Figure. Definition of the angles for the oriented HollowCylinderModel.*
[1c03e14]1363
[38d4102]1364.. image:: img/image062.JPG
[1c03e14]1365
[38d4102]1366*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1367
1368REFERENCE
[bf8c07b]1369
[93b6fcc]1370L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[38d4102]1371New York, (1987)
[1c03e14]1372
1373
1374
1375.. _CappedCylinderModel:
1376
1377**2.1.16 CappedCylinderModel**
1378
[38d4102]1379Calculates the scattering from a cylinder with spherical section end-caps. This model simply becomes the ConvexLensModel
1380when the length of the cylinder *L* = 0, that is, a sphereocylinder with end caps that have a radius larger than that
1381of the cylinder and the center of the end cap radius lies within the cylinder. See the diagram for the details
[1c03e14]1382of the geometry and restrictions on parameter values.
1383
[38d4102]1384*2.1.16.1. Definition*
[1c03e14]1385
[77cfcf0]1386The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1387
[38d4102]1388The Capped Cylinder geometry is defined as
[1c03e14]1389
[38d4102]1390.. image:: img/image112.JPG
[1c03e14]1391
[38d4102]1392where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end cap radius
1393*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1394
[38d4102]1395*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1396
[38d4102]1397The scattered intensity *I(q)* is calculated as
[1c03e14]1398
[38d4102]1399.. image:: img/image113.JPG
[1c03e14]1400
[38d4102]1401where the amplitude *A(q)* is given as
[1c03e14]1402
[38d4102]1403.. image:: img/image114.JPG
[1c03e14]1404
[38d4102]1405The < > brackets denote an average of the structure over all orientations. <\ *A*\ :sup:`2`\ *(q)*> is then the form
1406factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is the
1407difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1408
[38d4102]1409The volume of the Capped Cylinder is (with *h* as a positive value here)
[1c03e14]1410
[38d4102]1411.. image:: img/image115.JPG
[1c03e14]1412
[6386cd8]1413and its radius-of-gyration
[1c03e14]1414
[38d4102]1415.. image:: img/image116.JPG
[1c03e14]1416
[38d4102]1417**The requirement that** *R* >= *r* **is not enforced in the model! It is up to you to restrict this during analysis.**
[1c03e14]1418
[38d4102]1419This following example dataset is produced by running the MacroCappedCylinder(), using 200 data points,
1420*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]1421
1422==============  ========  =============
1423Parameter name  Units     Default value
1424==============  ========  =============
1425scale           None      1.0
1426len_cyl         |Ang|     400.0
1427rad_cap         |Ang|     40.0
1428rad_cyl         |Ang|     20.0
1429sld_capcyl      |Ang^-2|  1.0e-006
1430sld_solv        |Ang^-2|  6.3e-006
1431background      |cm^-1|   0
1432==============  ========  =============
1433
[38d4102]1434.. image:: img/image117.JPG
[1c03e14]1435
1436*Figure. 1D plot using the default values (w/256 data point).*
1437
[38d4102]1438For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1439|theta| = 45 deg and |phi| =0 deg with default values for other parameters
[1c03e14]1440
[38d4102]1441.. image:: img/image118.JPG
[1c03e14]1442
1443*Figure. 2D plot (w/(256X265) data points).*
1444
[38d4102]1445.. image:: img/image061.JPG
[1c03e14]1446
[38d4102]1447*Figure. Definition of the angles for oriented 2D cylinders.*
[1c03e14]1448
[38d4102]1449.. image:: img/image062.jpg
[1c03e14]1450
[38d4102]1451*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1452
[38d4102]1453REFERENCE
[bf8c07b]1454
[93b6fcc]1455H Kaya, *J. Appl. Cryst.*, 37 (2004) 223-230
[bf8c07b]1456
[93b6fcc]1457H Kaya and N-R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[1c03e14]1458
1459
1460
1461.. _CoreShellCylinderModel:
1462
[38d4102]1463**2.1.17. CoreShellCylinderModel**
[1c03e14]1464
[38d4102]1465This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1466form factor is normalized by the particle volume.
[1c03e14]1467
[38d4102]1468*2.1.17.1. Definition*
[1c03e14]1469
[38d4102]1470The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006)
[1c03e14]1471
[38d4102]1472.. image:: img/image067.PNG
[1c03e14]1473
[38d4102]1474where
[1c03e14]1475
[38d4102]1476.. image:: img/image068.PNG
[1c03e14]1477
[38d4102]1478.. image:: img/image239.PNG
[1c03e14]1479
[38d4102]1480and |alpha| is the angle between the axis of the cylinder and the *q*\ -vector, *Vs* is the volume of the outer shell
1481(i.e. the total volume, including the shell), *Vc* is the volume of the core, *L* is the length of the core, *r* is the
1482radius of the core, *t* is the thickness of the shell, |rho|\ :sub:`c` is the scattering length density of the core,
1483|rho|\ :sub:`s` is the scattering length density of the shell, |rho|\ :sub:`solv` is the scattering length density of
1484the solvent, and *bkg* is the background level. The outer radius of the shell is given by *r+t* and the total length of
1485the outer shell is given by *L+2t*. *J1* is the first order Bessel function.
[1c03e14]1486
[38d4102]1487.. image:: img/image069.JPG
[1c03e14]1488
[38d4102]1489To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
1490angles |theta| and |phi|\ . As for the case of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
[1c03e14]1491
[38d4102]1492NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the
1493effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1494
[38d4102]1495The returned value is scaled to units of |cm^-1| and the parameters of the core-shell cylinder model are the following
[1c03e14]1496
1497==============  ========  =============
1498Parameter name  Units     Default value
1499==============  ========  =============
1500scale           None      1.0
1501radius          |Ang|     20.0
1502thickness       |Ang|     10.0
1503length          |Ang|     400.0
1504core_sld        |Ang^-2|  1e-6
1505shell_sld       |Ang^-2|  4e-6
1506solvent_sld     |Ang^-2|  1e-6
1507background      |cm^-1|   0.0
1508axis_theta      degree    90
1509axis_phi        degree    0.0
1510==============  ========  =============
1511
[38d4102]1512The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1513
[38d4102]1514The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1515and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1516
[38d4102]1517*2.1.17.2. Validation of the CoreShellCylinderModel*
[1c03e14]1518
[38d4102]1519Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
1520NIST (Kline, 2006). Figure 1 shows a comparison of the 1D output of our model and the output of the NIST software.
[1c03e14]1521
[38d4102]1522.. image:: img/image070.JPG
[1c03e14]1523
[38d4102]1524*Figure 1: Comparison of the SasView scattering intensity for a core-shell cylinder with the output of the NIST SANS*
1525*analysis software.* The parameters were set to: *Scale* = 1.0, *Radius* = 20 |Ang|, *Thickness* = 10 |Ang|,
1526*Length* = 400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|, *Solvent_sld* = 1e-6 |Ang^-2|,
1527and *Background* = 0.01 |cm^-1|.
[1c03e14]1528
[38d4102]1529Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
1530to compare the implementation of the intensity for fully oriented cylinders, we can compare the result of averaging our
15312D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a cross-check.
[1c03e14]1532
[38d4102]1533.. image:: img/image071.JPG
[1c03e14]1534
[38d4102]1535*Figure 2: Comparison of the intensity for uniformly distributed core-shell cylinders calculated from our 2D model and*
1536*the intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius* = 20 |Ang|,
1537*Thickness* = 10 |Ang|, *Length* =400 |Ang|, *Core_sld* = 1e-6 |Ang^-2|, *Shell_sld* = 4e-6 |Ang^-2|,
1538*Solvent_sld* = 1e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]1539
[38d4102]1540.. image:: img/image061.JPG
[1c03e14]1541
[38d4102]1542*Figure. Definition of the angles for oriented core-shell cylinders.*
[1c03e14]1543
[38d4102]1544.. image:: img/image062.JPG
[1c03e14]1545
[38d4102]1546*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1547
15482013/11/26 - Description reviewed by Heenan, R.
1549
1550
1551
1552.. _EllipticalCylinderModel:
1553
1554**2.1.18 EllipticalCylinderModel**
1555
[38d4102]1556This function calculates the scattering from an elliptical cylinder.
[1c03e14]1557
[38d4102]1558*2.1.18.1 Definition for 2D (orientated system)*
[1c03e14]1559
[38d4102]1560The angles |theta| and |phi| define the orientation of the axis of the cylinder. The angle |bigpsi| is defined as the
1561orientation of the major axis of the ellipse with respect to the vector *Q*\ . A gaussian polydispersity can be added
1562to any of the orientation angles, and also for the minor radius and the ratio of the ellipse radii.
[1c03e14]1563
[38d4102]1564.. image:: img/image098.gif
[1c03e14]1565
[38d4102]1566*Figure.* *a* = *r_minor* and |nu|\ :sub:`n` = *r_ratio* (i.e., *r_major* / *r_minor*).
[1c03e14]1567
[38d4102]1568The function calculated is
[1c03e14]1569
[38d4102]1570.. image:: img/image099.PNG
[1c03e14]1571
[38d4102]1572with the functions
[1c03e14]1573
[38d4102]1574.. image:: img/image100.PNG
[1c03e14]1575
[38d4102]1576and the angle |bigpsi| is defined as the orientation of the major axis of the ellipse with respect to the vector *q*\ .
[1c03e14]1577
[38d4102]1578*2.1.18.2 Definition for 1D (no preferred orientation)*
[1c03e14]1579
[38d4102]1580The form factor is averaged over all possible orientation before normalized by the particle volume
[1c03e14]1581
[38d4102]1582*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V*
[1c03e14]1583
1584The returned value is scaled to units of |cm^-1|.
1585
[38d4102]1586To provide easy access to the orientation of the elliptical cylinder, we define the axis of the cylinder using two
1587angles |theta|, |phi| and |bigpsi|. As for the case of the cylinder, the angles |theta| and |phi| are defined on
1588Figure 2 of CylinderModel. The angle |bigpsi| is the rotational angle around its own long_c axis against the *q* plane.
1589For example, |bigpsi| = 0 when the *r_minor* axis is parallel to the *x*\ -axis of the detector.
[1c03e14]1590
[38d4102]1591All angle parameters are valid and given only for 2D calculation; ie, an oriented system.
[1c03e14]1592
[38d4102]1593.. image:: img/image101.JPG
[1c03e14]1594
[38d4102]1595*Figure. Definition of angles for 2D*
[1c03e14]1596
[38d4102]1597.. image:: img/image062.JPG
[1c03e14]1598
[38d4102]1599*Figure. Examples of the angles for oriented elliptical cylinders against the detector plane.*
[1c03e14]1600
[38d4102]1601NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= sqrt(*r_minor*\ :sup:`2` \* *r_ratio*))
1602and length values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1603
1604==============  ========  =============
1605Parameter name  Units     Default value
1606==============  ========  =============
1607scale           None      1.0
1608r_minor         |Ang|     20.0
1609r_ratio         |Ang|     1.5
1610length          |Ang|     400.0
1611sldCyl          |Ang^-2|  4e-06
1612sldSolv         |Ang^-2|  1e-06
1613background      |cm^-1|   0
1614==============  ========  =============
1615
[38d4102]1616.. image:: img/image102.JPG
[1c03e14]1617
1618*Figure. 1D plot using the default values (w/1000 data point).*
1619
[38d4102]1620*2.1.18.3 Validation of the EllipticalCylinderModel*
[1c03e14]1621
[38d4102]1622Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
1623the 2D calculation over all possible angles. The figure below shows the comparison where the solid dot refers to
1624averaged 2D values while the line represents the result of the 1D calculation (for the 2D averaging, values of 76, 180,
1625and 76 degrees are taken for the angles of |theta|, |phi|, and |bigpsi| respectively).
[1c03e14]1626
[38d4102]1627.. image:: img/image103.GIF
[1c03e14]1628
1629*Figure. Comparison between 1D and averaged 2D.*
1630
[38d4102]1631In the 2D average, more binning in the angle |phi| is necessary to get the proper result. The following figure shows
1632the results of the averaging by varying the number of angular bins.
[1c03e14]1633
[38d4102]1634.. image:: img/image104.GIF
[1c03e14]1635
1636*Figure. The intensities averaged from 2D over different numbers of bins and angles.*
1637
1638REFERENCE
[bf8c07b]1639
[93b6fcc]1640L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[38d4102]1641New York, (1987)
[1c03e14]1642
1643
1644
1645.. _FlexibleCylinderModel:
1646
1647**2.1.19. FlexibleCylinderModel**
1648
[38d4102]1649This model provides the form factor, *P(q)*, for a flexible cylinder where the form factor is normalized by the volume
1650of the cylinder. **Inter-cylinder interactions are NOT provided for.**
[1c03e14]1651
[38d4102]1652*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
[1c03e14]1653
[38d4102]1654where the averaging < > is applied over all orientations for 1D.
[1c03e14]1655
[38d4102]1656The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
1657
1658.. image:: img/image040.gif
1659
1660*2.1.19.1. Definition*
1661
1662.. image:: img/image075.JPG
1663
1664The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1665segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1666cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1667stiffness of a chain.
1668
1669The returned value is in units of |cm^-1|, on absolute scale.
1670
1671In the parameters, the sldCyl and sldSolv represent the SLD of the chain/cylinder and solvent respectively.
[1c03e14]1672
1673==============  ========  =============
1674Parameter name  Units     Default value
1675==============  ========  =============
1676scale           None      1.0
1677radius          |Ang|     20
1678length          |Ang|     1000
1679sldCyl          |Ang^-2|  1e-06
1680sldSolv         |Ang^-2|  6.3e-06
1681background      |cm^-1|   0.01
1682kuhn_length     |Ang|     100
1683==============  ========  =============
1684
[38d4102]1685.. image:: img/image076.JPG
[1c03e14]1686
1687*Figure. 1D plot using the default values (w/1000 data point).*
1688
[38d4102]1689Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
1690(Kline, 2006).
[1c03e14]1691
[38d4102]1692From the reference
[1c03e14]1693
[38d4102]1694  "Method 3 With Excluded Volume" is used. The model is a parametrization of simulations of a discrete representation
1695  of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous limit. See equations (13,26-27) in
1696  the original reference for the details.
[1c03e14]1697
[38d4102]1698REFERENCE
[bf8c07b]1699
[93b6fcc]1700J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1701*effects*. *Macromolecules*, 29 (1996) 7602-7612
[1c03e14]1702
[38d4102]1703Correction of the formula can be found in
[bf8c07b]1704
[93b6fcc]1705W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1706*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[1c03e14]1707
1708
1709
1710.. _FlexCylEllipXModel:
1711
1712**2.1.20 FlexCylEllipXModel**
1713
[38d4102]1714This model calculates the form factor for a flexible cylinder with an elliptical cross section and a uniform scattering
1715length density. The non-negligible diameter of the cylinder is included by accounting for excluded volume interactions
1716within the walk of a single cylinder. The form factor is normalized by the particle volume such that
[1c03e14]1717
[38d4102]1718*P(q)* = *scale* \* <*F*\ :sup:`2`> / *V* + *background*
1719
1720where < > is an average over all possible orientations of the flexible cylinder.
1721
1722*2.1.20.1. Definition*
[1c03e14]1723
[38d4102]1724The function calculated is from the reference given below. From that paper, "Method 3 With Excluded Volume" is used.
1725The model is a parameterization of simulations of a discrete representation of the worm-like chain model of Kratky and
1726Porod applied in the pseudo-continuous limit. See equations (13, 26-27) in the original reference for the details.
[1c03e14]1727
[38d4102]1728NB: there are several typos in the original reference that have been corrected by WRC. Details of the corrections are
1729in the reference below. Most notably
[1c03e14]1730
[38d4102]1731- Equation (13): the term (1 - w(QR)) should swap position with w(QR)
[1c03e14]1732
[38d4102]1733- Equations (23) and (24) are incorrect; WRC has entered these into Mathematica and solved analytically. The results
1734  were then converted to code.
[1c03e14]1735
1736- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3)
1737
1738- The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior.
1739
[38d4102]1740.. image:: img/image077.JPG
[1c03e14]1741
[38d4102]1742The chain of contour length, *L*, (the total length) can be described as a chain of some number of locally stiff
1743segments of length *l*\ :sub:`p`\ , the persistence length (the length along the cylinder over which the flexible
1744cylinder can be considered a rigid rod). The Kuhn length (*b* = 2 \* *l* :sub:`p`) is also used to describe the
1745stiffness of a chain.
[1c03e14]1746
[38d4102]1747The cross section of the cylinder is elliptical, with minor radius *a*\ . The major radius is larger, so of course,
1748**the axis ratio (parameter 4) must be greater than one.** Simple constraints should be applied during curve fitting to
1749maintain this inequality.
[1c03e14]1750
1751The returned value is in units of |cm^-1|, on absolute scale.
1752
[38d4102]1753In the parameters, *sldCyl* and *sldSolv* represent the SLD of the chain/cylinder and solvent respectively. The
1754*scale*, and the contrast are both multiplicative factors in the model and are perfectly correlated. One or both of
1755these parameters must be held fixed during model fitting.
[1c03e14]1756
[38d4102]1757If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
1758unit volume, *I(q)* = |phi| \* *P(q)*.
[1c03e14]1759
[38d4102]1760**No inter-cylinder interference effects are included in this calculation.**
[1c03e14]1761
[38d4102]1762For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]1763
[38d4102]1764.. image:: img/image008.PNG
[1c03e14]1765
[38d4102]1766This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data points, *qmin* = 0.001 |Ang^-1|,
1767*qmax* = 0.7 |Ang^-1| and the default values below
[1c03e14]1768
1769==============  ========  =============
1770Parameter name  Units     Default value
1771==============  ========  =============
1772axis_ratio      None      1.5
1773background      |cm^-1|   0.0001
1774Kuhn_length     |Ang|     100
1775Contour length  |Ang|     1e+3
1776radius          |Ang|     20.0
1777scale           None      1.0
1778sldCyl          |Ang^-2|  1e-6
1779sldSolv         |Ang^-2|  6.3e-6
1780==============  ========  =============
1781
[38d4102]1782.. image:: img/image078.JPG
[1c03e14]1783
1784*Figure. 1D plot using the default values (w/200 data points).*
1785
[38d4102]1786REFERENCE
[bf8c07b]1787
[93b6fcc]1788J S Pedersen and P Schurtenberger. *Scattering functions of semiflexible polymers with and without excluded volume*
[38d4102]1789*effects*. *Macromolecules*, 29 (1996) 7602-7612
1790
1791Correction of the formula can be found in
[bf8c07b]1792
[93b6fcc]1793W R Chen, P D Butler and L J Magid, *Incorporating Intermicellar Interactions in the Fitting of SANS Data from*
[4ed2d0a1]1794*Cationic Wormlike Micelles*. *Langmuir*, 22(15) 2006 6539–6548
[38d4102]1795
[1c03e14]1796
1797
1798.. _CoreShellBicelleModel:
1799
1800**2.1.21 CoreShellBicelleModel**
1801
[77cfcf0]1802This model provides the form factor for a circular cylinder with a core-shell scattering length density profile. The
1803form factor is normalized by the particle volume.
[1c03e14]1804
[77cfcf0]1805This model is a more general case of core-shell cylinder model (see above and reference below) in that the parameters
1806of the shell are separated into a face-shell and a rim-shell so that users can set different values of the thicknesses
1807and SLDs.
[1c03e14]1808
[77cfcf0]1809.. image:: img/image240.PNG
[1c03e14]1810
[77cfcf0]1811*(Graphic from DOI: 10.1039/C0NP00002G)*
1812
1813The returned value is scaled to units of |cm^-1| and the parameters of the CoreShellBicelleModel are the following
[1c03e14]1814
1815==============  ========  =============
1816Parameter name  Units     Default value
1817==============  ========  =============
1818scale           None      1.0
1819radius          |Ang|     20.0
1820rim_thick       |Ang|     10.0
1821face_thick      |Ang|     10.0
1822length          |Ang|     400.0
1823core_sld        |Ang^-2|  1e-6
1824rim_sld         |Ang^-2|  4e-6
1825face_sld        |Ang^-2|  4e-6
1826solvent_sld     |Ang^-2|  1e-6
1827background      |cm^-1|   0.0
1828axis_theta      degree    90
1829axis_phi        degree    0.0
1830==============  ========  =============
1831
[77cfcf0]1832The output of the 1D scattering intensity function for randomly oriented cylinders is then given by the equation above.
[1c03e14]1833
[77cfcf0]1834The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering kernel
1835and the 1D scattering intensity use the c-library from NIST.
[1c03e14]1836
[77cfcf0]1837.. image:: img/cscylbicelle_pic.jpg
[1c03e14]1838
1839*Figure. 1D plot using the default values (w/200 data point).*
1840
[77cfcf0]1841.. image:: img/image061.JPG
[1c03e14]1842
[77cfcf0]1843*Figure. Definition of the angles for the oriented CoreShellBicelleModel.*
[1c03e14]1844
[77cfcf0]1845.. image:: img/image062.JPG
[1c03e14]1846
[77cfcf0]1847*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1848
1849REFERENCE
[bf8c07b]1850
[93b6fcc]1851L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press,
[77cfcf0]1852New York, (1987)
[1c03e14]1853
1854
1855
1856.. _BarBellModel:
1857
1858**2.1.22. BarBellModel**
1859
[77cfcf0]1860Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of
1861the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than
1862that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell
1863are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values.
[1c03e14]1864
[77cfcf0]1865*2.1.22.1. Definition*
[1c03e14]1866
[77cfcf0]1867The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]1868
1869The barbell geometry is defined as
1870
[77cfcf0]1871.. image:: img/image105.JPG
[1c03e14]1872
[77cfcf0]1873where *r* is the radius of the cylinder. All other parameters are as defined in the diagram.
[1c03e14]1874
[77cfcf0]1875Since the end cap radius
1876*R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as
[1c03e14]1877
[77cfcf0]1878*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`)
[1c03e14]1879
[77cfcf0]1880The scattered intensity *I(q)* is calculated as
[1c03e14]1881
[77cfcf0]1882.. image:: img/image106.PNG
[1c03e14]1883
[77cfcf0]1884where the amplitude *A(q)* is given as
[1c03e14]1885
[77cfcf0]1886.. image:: img/image107.PNG
[1c03e14]1887
[77cfcf0]1888The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form
1889factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is
1890the difference of scattering length densities of the cylinder and the surrounding solvent.
[1c03e14]1891
[77cfcf0]1892The volume of the barbell is
[1c03e14]1893
[77cfcf0]1894.. image:: img/image108.JPG
[1c03e14]1895
1896
[6386cd8]1897and its radius-of-gyration is
[1c03e14]1898
[77cfcf0]1899.. image:: img/image109.JPG
[1c03e14]1900
[77cfcf0]1901**The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis.
[1c03e14]1902
[77cfcf0]1903This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, *qmin* = 0.001 |Ang^-1|,
1904*qmax* = 0.7 |Ang^-1| and the following default values
[1c03e14]1905
1906==============  ========  =============
1907Parameter name  Units     Default value
1908==============  ========  =============
1909scale           None      1.0
1910len_bar         |Ang|     400.0
1911rad_bar         |Ang|     20.0
1912rad_bell        |Ang|     40.0
1913sld_barbell     |Ang^-2|  1.0e-006
1914sld_solv        |Ang^-2|  6.3e-006
1915background      |cm^-1|   0
1916==============  ========  =============
1917
[77cfcf0]1918.. image:: img/image110.JPG
[1c03e14]1919
1920*Figure. 1D plot using the default values (w/256 data point).*
1921
[77cfcf0]1922For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for
1923|theta| = 45 deg and |phi| = 0 deg with default values for other parameters
[1c03e14]1924
[77cfcf0]1925.. image:: img/image111.JPG
[1c03e14]1926
1927*Figure. 2D plot (w/(256X265) data points).*
1928
[77cfcf0]1929.. image:: img/image061.JPG
[1c03e14]1930
[77cfcf0]1931*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]1932
[77cfcf0]1933.. image:: img/image062.JPG
[1c03e14]1934
1935Figure. Definition of the angles for oriented 2D barbells.
1936
[77cfcf0]1937REFERENCE
[bf8c07b]1938
[93b6fcc]1939H Kaya, *J. Appl. Cryst.*, 37 (2004) 37 223-230
[bf8c07b]1940
[93b6fcc]1941H Kaya and N R deSouza, *J. Appl. Cryst.*, 37 (2004) 508-509 (addenda and errata)
[77cfcf0]1942
[1c03e14]1943
1944
1945.. _StackedDisksModel:
1946
1947**2.1.23. StackedDisksModel**
1948
[77cfcf0]1949This model provides the form factor, *P(q)*, for stacked discs (tactoids) with a core/layer structure where the form
1950factor is normalized by the volume of the cylinder. Assuming the next neighbor distance (d-spacing) in a stack of
1951parallel discs obeys a Gaussian distribution, a structure factor *S(q)* proposed by Kratky and Porod in 1949 is used
1952in this function.
[1c03e14]1953
[77cfcf0]1954Note that the resolution smearing calculation uses 76 Gauss quadrature points to properly smear the model since the
1955function is HIGHLY oscillatory, especially around the *q*-values that correspond to the repeat distance of the layers.
[1c03e14]1956
[77cfcf0]1957The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]1958
[77cfcf0]1959.. image:: img/image008.PNG
[1c03e14]1960
[77cfcf0]1961The returned value is in units of |cm^-1| |sr^-1|, on absolute scale.
[1c03e14]1962
[77cfcf0]1963*2.1.23.1 Definition*
[1c03e14]1964
[77cfcf0]1965.. image:: img/image079.GIF
[1c03e14]1966
[4ed2d0a1]1967The scattering intensity *I(q)* is
[1c03e14]1968
[77cfcf0]1969.. image:: img/image081.PNG
[1c03e14]1970
[77cfcf0]1971where the contrast
[1c03e14]1972
[77cfcf0]1973.. image:: img/image082.PNG
[1c03e14]1974
[77cfcf0]1975and *N* is the number of discs per unit volume, |alpha| is the angle between the axis of the disc and *q*, and *Vt*
1976and *Vc* are the total volume and the core volume of a single disc, respectively.
[1c03e14]1977
[77cfcf0]1978.. image:: img/image083.PNG
[1c03e14]1979
[77cfcf0]1980where *d* = thickness of the layer (*layer_thick*), 2\ *h* = core thickness (*core_thick*), and *R* = radius of the
1981disc (*radius*).
[1c03e14]1982
[77cfcf0]1983.. image:: img/image084.PNG
[1c03e14]1984
[77cfcf0]1985where *n* = the total number of the disc stacked (*n_stacking*), *D* = the next neighbor center-to-center distance
1986(*d-spacing*), and |sigma|\ D= the Gaussian standard deviation of the d-spacing (*sigma_d*).
[1c03e14]1987
[77cfcf0]1988To provide easy access to the orientation of the stacked disks, we define the axis of the cylinder using two angles
1989|theta| and |phi|. These angles are defined on Figure 2 of CylinderModel.
[1c03e14]1990
[77cfcf0]1991NB: The 2nd virial coefficient of the cylinder is calculated based on the *radius* and *length* = *n_stacking* \*
1992(*core_thick* + 2 \* *layer_thick*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]1993
1994==============  ========  =============
1995Parameter name  Units     Default value
1996==============  ========  =============
1997background      |cm^-1|   0.001
1998core_sld        |Ang^-2|  4e-006
1999core_thick      |Ang|     10
2000layer_sld       |Ang^-2|  0
2001layer_thick     |Ang|     15
2002n_stacking      None      1
2003radius          |Ang|     3e+03
2004scale           None      0.01
2005sigma_d         |Ang|     0
2006solvent_sld     |Ang^-2|  5e-06
2007==============  ========  =============
2008
[77cfcf0]2009.. image:: img/image085.JPG
[1c03e14]2010
2011*Figure. 1D plot using the default values (w/1000 data point).*
2012
[77cfcf0]2013.. image:: img/image086.JPG
[1c03e14]2014
[77cfcf0]2015*Figure. Examples of the angles for oriented stackeddisks against the detector plane.*
[1c03e14]2016
[77cfcf0]2017.. image:: img/image062.JPG
[1c03e14]2018
[77cfcf0]2019*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]2020
[77cfcf0]2021Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2022(Kline, 2006)
[1c03e14]2023
2024REFERENCE
[bf8c07b]2025
[93b6fcc]2026A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, 1955
[bf8c07b]2027
[93b6fcc]2028O Kratky and G Porod, *J. Colloid Science*, 4, (1949) 35
[bf8c07b]2029
[93b6fcc]2030J S Higgins and H C Benoit, *Polymers and Neutron Scattering*, Clarendon, Oxford, 1994
[1c03e14]2031
2032
2033
2034.. _PringleModel:
2035
2036**2.1.24. PringleModel**
2037
[77cfcf0]2038This model provides the form factor, *P(q)*, for a 'pringle' or 'saddle-shaped' object (a hyperbolic paraboloid).
[1c03e14]2039
[77cfcf0]2040.. image:: img/image241.PNG
[1c03e14]2041
[77cfcf0]2042*(Graphic from Matt Henderson, matt@matthen.com)*
[1c03e14]2043
2044The returned value is in units of |cm^-1|, on absolute scale.
2045
[77cfcf0]2046The form factor calculated is
[1c03e14]2047
[77cfcf0]2048.. image:: img/pringle_eqn_1.jpg
[1c03e14]2049
2050where
2051
[77cfcf0]2052.. image:: img/pringle_eqn_2.jpg
[1c03e14]2053
[77cfcf0]2054The parameters of the model and a plot comparing the pringle model with the equivalent cylinder are shown below.
[1c03e14]2055
2056==============  ========  =============
2057Parameter name  Units     Default value
2058==============  ========  =============
2059background      |cm^-1|   0.0
2060alpha           None      0.001
2061beta            None      0.02
2062radius          |Ang|     60
2063scale           None      1
2064sld_pringle     |Ang^-2|  1e-06
2065sld_solvent     |Ang^-2|  6.3e-06
2066thickness       |Ang|     10
2067==============  ========  =============
2068
[77cfcf0]2069.. image:: img/pringle-vs-cylinder.png
[1c03e14]2070
2071*Figure. 1D plot using the default values (w/150 data point).*
2072
2073REFERENCE
[bf8c07b]2074
[93b6fcc]2075S Alexandru Rautu, Private Communication.
[1c03e14]2076
2077
2078
2079.. _EllipsoidModel:
2080
2081**2.1.25. EllipsoidModel**
2082
[ca1af82]2083This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform scattering length density.
2084The form factor is normalized by the particle volume.
[1c03e14]2085
[ca1af82]2086*2.1.25.1. Definition*
[1c03e14]2087
[ca1af82]2088The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987)
[1c03e14]2089
[ca1af82]2090.. image:: img/image059.PNG
[1c03e14]2091
[ca1af82]2092where
[1c03e14]2093
[ca1af82]2094.. image:: img/image119.PNG
[1c03e14]2095
[ca1af82]2096and
[1c03e14]2097
[ca1af82]2098.. image:: img/image120.PNG
[1c03e14]2099
[ca1af82]2100|alpha| is the angle between the axis of the ellipsoid and the *q*\ -vector, *V* is the volume of the ellipsoid, *Ra*
2101is the radius along the rotational axis of the ellipsoid, *Rb* is the radius perpendicular to the rotational axis of
[58eccf6]2102the ellipsoid and |drho| (contrast) is the scattering length density difference between the scatterer and
[ca1af82]2103the solvent.
[1c03e14]2104
[ca1af82]2105To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the ellipsoid using two
2106angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. For the ellipsoid, |theta|
2107is the angle between the rotational axis and the *z*\ -axis.
[1c03e14]2108
[ca1af82]2109NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* and *radius_b* values, and
2110used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2111
[ca1af82]2112The returned value is scaled to units of |cm^-1| and the parameters of the EllipsoidModel are the following
[1c03e14]2113
2114================  ========  =============
2115Parameter name    Units     Default value
2116================  ========  =============
2117scale             None      1.0
2118radius_a (polar)  |Ang|     20.0
2119radius_b (equat)  |Ang|     400.0
2120sldEll            |Ang^-2|  4.0e-6
2121sldSolv           |Ang^-2|  1.0e-6
2122background        |cm^-1|   0.0
2123axis_theta        degree    90
2124axis_phi          degree    0.0
2125================  ========  =============
2126
[ca1af82]2127The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given by the equation
2128above.
[1c03e14]2129
[ca1af82]2130.. image:: img/image121.JPG
[1c03e14]2131
[ca1af82]2132The *axis_theta* and *axis_phi* parameters are not used for the 1D output. Our implementation of the scattering
2133kernel and the 1D scattering intensity use the c-library from NIST.
[1c03e14]2134
[ca1af82]2135.. image:: img/image122.JPG
[1c03e14]2136
[ca1af82]2137*Figure. The angles for oriented ellipsoid.*
[1c03e14]2138
[ca1af82]2139*2.1.25.1. Validation of the EllipsoidModel*
[1c03e14]2140
[ca1af82]2141Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
2142NIST (Kline, 2006). Figure 1 below shows a comparison of the 1D output of our model and the output of the NIST
2143software.
[1c03e14]2144
[ca1af82]2145.. image:: img/image123.JPG
[1c03e14]2146
[ca1af82]2147*Figure 1: Comparison of the SasView scattering intensity for an ellipsoid with the output of the NIST SANS analysis*
2148*software.* The parameters were set to: *Scale* = 1.0, *Radius_a* = 20, *Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|,
2149and *Background* = 0.01 |cm^-1|.
[1c03e14]2150
[ca1af82]2151Averaging over a distribution of orientation is done by evaluating the equation above. Since we have no other software
2152to compare the implementation of the intensity for fully oriented ellipsoids, we can compare the result of averaging
2153our 2D output using a uniform distribution *p(*\ |theta|,\ |phi|\ *)* = 1.0. Figure 2 shows the result of such a
[1c03e14]2154cross-check.
2155
[ca1af82]2156.. image:: img/image124.JPG
[1c03e14]2157
[ca1af82]2158*Figure 2: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the*
2159*intensity from the NIST SANS analysis software.* The parameters used were: *Scale* = 1.0, *Radius_a* = 20,
2160*Radius_b* = 400, *Contrast* = 3e-6 |Ang^-2|, and *Background* = 0.0 |cm^-1|.
[1c03e14]2161
[ca1af82]2162The discrepancy above *q* = 0.3 |cm^-1| is due to the way the form factors are calculated in the c-library provided by
2163NIST. A numerical integration has to be performed to obtain *P(q)* for randomly oriented particles. The NIST software
2164performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high q where the
2165amplitude varies quickly as a function of *q*. The SasView result shown has been obtained by summing over 501
2166equidistant points in . Our result was found to be stable over the range of *q* shown for a number of points higher
2167than 500.
[1c03e14]2168
[ca1af82]2169REFERENCE
[bf8c07b]2170
[93b6fcc]2171L A Feigin and D I Svergun. *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[ca1af82]2172New York, 1987.
[1c03e14]2173
2174
2175
2176.. _CoreShellEllipsoidModel:
2177
2178**2.1.26. CoreShellEllipsoidModel**
2179
[990c2eb]2180This model provides the form factor, *P(q)*, for a core shell ellipsoid (below) where the form factor is normalized by
2181the volume of the cylinder.
[1c03e14]2182
[990c2eb]2183*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2184
[990c2eb]2185where the volume *V* = (4/3)\ |pi| (*r*\ :sub:`maj` *r*\ :sub:`min`\ :sup:`2`) and the averaging < > is applied over
2186all orientations for 1D.
[1c03e14]2187
[990c2eb]2188.. image:: img/image125.GIF
[1c03e14]2189
[990c2eb]2190The returned value is in units of |cm^-1|, on absolute scale.
[1c03e14]2191
[990c2eb]2192*2.1.26.1. Definition*
[1c03e14]2193
[990c2eb]2194The form factor calculated is
[1c03e14]2195
[990c2eb]2196.. image:: img/image126.PNG
[1c03e14]2197
[990c2eb]2198To provide easy access to the orientation of the core-shell ellipsoid, we define the axis of the solid ellipsoid using
2199two angles |theta| and |phi|\ . These angles are defined on Figure 2 of the CylinderModel_. The contrast is defined as
2200SLD(core) - SLD(shell) and SLD(shell) - SLD(solvent).
[1c03e14]2201
[990c2eb]2202In the parameters, *equat_core* = equatorial core radius, *polar_core* = polar core radius, *equat_shell* =
2203*r*\ :sub:`min` (or equatorial outer radius), and *polar_shell* = = *r*\ :sub:`maj` (or polar outer radius).
[1c03e14]2204
[990c2eb]2205NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the *radius_a* (= *polar_shell*) and
2206*radius_b* (= *equat_shell*) values, and used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2207
2208==============  ========  =============
2209Parameter name  Units     Default value
2210==============  ========  =============
2211background      |cm^-1|   0.001
2212equat_core      |Ang|     200
2213equat_shell     |Ang|     250
2214sld_solvent     |Ang^-2|  6e-06
2215ploar_shell     |Ang|     30
2216ploar_core      |Ang|     20
2217scale           None      1
2218sld_core        |Ang^-2|  2e-06
2219sld_shell       |Ang^-2|  1e-06
2220==============  ========  =============
2221
[990c2eb]2222.. image:: img/image127.JPG
[1c03e14]2223
2224*Figure. 1D plot using the default values (w/1000 data point).*
2225
[990c2eb]2226.. image:: img/image122.JPG
[1c03e14]2227
[990c2eb]2228*Figure. The angles for oriented CoreShellEllipsoid.*
[1c03e14]2229
[990c2eb]2230Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2231(Kline, 2006).
[1c03e14]2232
2233REFERENCE
[bf8c07b]2234
[93b6fcc]2235M Kotlarchyk, S H Chen, *J. Chem. Phys.*, 79 (1983) 2461
[bf8c07b]2236
[93b6fcc]2237S J Berr, *Phys. Chem.*, 91 (1987) 4760
[1c03e14]2238
2239
2240
[77cfcf0]2241.. _CoreShellEllipsoidXTModel:
2242
2243**2.1.27. CoreShellEllipsoidXTModel**
2244
2245An alternative version of *P(q)* for the core-shell ellipsoid (see CoreShellEllipsoidModel), having as parameters the
2246core axial ratio *X* and a shell thickness, which are more often what we would like to determine.
2247
2248This model is also better behaved when polydispersity is applied than the four independent radii in
2249CoreShellEllipsoidModel.
2250
[990c2eb]2251*2.1.27.1. Definition*
[77cfcf0]2252
2253.. image:: img/image125.gif
2254
2255The geometric parameters of this model are
2256
2257  *equat_core* = equatorial core radius = *Rminor_core*
2258  *X_core* = *polar_core* / *equat_core* = *Rmajor_core* / *Rminor_core*
2259  *T_shell* = *equat_outer* - *equat_core* = *Rminor_outer* - *Rminor_core*
2260  *XpolarShell* = *Tpolar_shell* / *T_shell* = (*Rmajor_outer* - *Rmajor_core*)/(*Rminor_outer* - *Rminor_core*)
2261
2262In terms of the original radii
2263
2264  *polar_core* = *equat_core* \* *X_core*
2265  *equat_shell* = *equat_core* + *T_shell*
2266  *polar_shell* = *equat_core* \* *X_core* + *T_shell* \* *XpolarShell*
2267
2268  (where we note that "shell" perhaps confusingly, relates to the outer radius)
2269
2270When *X_core* < 1 the core is oblate; when *X_core* > 1  it is prolate. *X_core* = 1 is a spherical core.
2271
2272For a fixed shell thickness *XpolarShell* = 1, to scale the shell thickness pro-rata with the radius
2273*XpolarShell* = *X_core*.
2274
2275When including an *S(q)*, the radius in *S(q)* is calculated to be that of a sphere with the same 2nd virial
2276coefficient of the **outer** surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of
2277the ellipsoid is large (ie, if *X* << 1 or *X* >> 1), when the *S(q)* - which assumes spheres - will not in any case
2278be valid.
2279
[6386cd8]2280If SAS data are in absolute units, and the SLDs are correct, then *scale* should be the total volume fraction of the
[77cfcf0]2281"outer particle". When *S(q)* is introduced this moves to the *S(q)* volume fraction, and *scale* should then be 1.0,
2282or contain some other units conversion factor (for example, if you have SAXS data).
2283
2284==============  ========  =============
2285Parameter name  Units     Default value
2286==============  ========  =============
2287background      |cm^-1|   0.001
2288equat_core      |Ang|     20
2289scale           None      0.05
2290sld_core        |Ang^-2|  2.0e-6
2291sld_shell       |Ang^-2|  1.0e-6
2292sld_solv        |Ang^-2|  6.3e-6
2293T_shell         |Ang|     30
2294X_core          None      3.0
2295XpolarShell     None      1.0
2296==============  ========  =============
2297
2298REFERENCE
[bf8c07b]2299
[93b6fcc]2300R K Heenan, Private communication
[77cfcf0]2301
2302
2303
[bf8c07b]2304.. _TriaxialEllipsoidModel:
[1c03e14]2305
[77cfcf0]2306**2.1.28. TriaxialEllipsoidModel**
[1c03e14]2307
[990c2eb]2308This model provides the form factor, *P(q)*, for an ellipsoid (below) where all three axes are of different lengths,
2309i.e., *Ra* =< *Rb* =< *Rc*\ . **Users should maintain this inequality for all calculations**.
[1c03e14]2310
[990c2eb]2311*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2312
[990c2eb]2313where the volume *V* = (4/3)\ |pi| (*Ra* *Rb* *Rc*), and the averaging < > is applied over all orientations for 1D.
[1c03e14]2314
[990c2eb]2315.. image:: img/image128.JPG
[1c03e14]2316
2317The returned value is in units of |cm^-1|, on absolute scale.
2318
[990c2eb]2319*2.1.28.1. Definition*
2320
2321The form factor calculated is
[1c03e14]2322
[990c2eb]2323.. image:: img/image129.PNG
[1c03e14]2324
[990c2eb]2325To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the cylinder using the
2326angles |theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is
2327the rotational angle around its own *semi_axisC* axis against the *q* plane. For example, |bigpsi| = 0 when the
2328*semi_axisA* axis is parallel to the *x*-axis of the detector.
[1c03e14]2329
[6386cd8]2330The radius-of-gyration for this system is *Rg*\ :sup:`2` = (*Ra*\ :sup:`2` *Rb*\ :sup:`2` *Rc*\ :sup:`2`)/5.
[1c03e14]2331
[990c2eb]2332The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, *semi_axisA* = *Ra* (or minor equatorial
2333radius), *semi_axisB* = *Rb* (or major equatorial radius), and *semi_axisC* = *Rc* (or polar radius of the ellipsoid).
[1c03e14]2334
[990c2eb]2335NB: The 2nd virial coefficient of the triaxial solid ellipsoid is calculated based on the
2336*radius_a* (= *semi_axisC*\ ) and *radius_b* (= sqrt(*semi_axisA* \* *semi_axisB*)) values, and used as the effective
2337radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2338
2339==============  ========  =============
2340Parameter name  Units     Default value
2341==============  ========  =============
2342background      |cm^-1|   0.0
2343semi_axisA      |Ang|     35
2344semi_axisB      |Ang|     100
2345semi_axisC      |Ang|     400
2346scale           None      1
2347sldEll          |Ang^-2|  1.0e-06
2348sldSolv         |Ang^-2|  6.3e-06
2349==============  ========  =============
2350
[990c2eb]2351.. image:: img/image130.JPG
[1c03e14]2352
2353*Figure. 1D plot using the default values (w/1000 data point).*
2354
[990c2eb]2355*2.1.28.2.Validation of the TriaxialEllipsoidModel*
[1c03e14]2356
[990c2eb]2357Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
23582D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
23592D while the line represents the result of 1D calculation (for 2D averaging, 76, 180, and 76 points are taken for the
2360angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]2361
[990c2eb]2362.. image:: img/image131.GIF
[1c03e14]2363
2364*Figure. Comparison between 1D and averaged 2D.*
2365
[990c2eb]2366.. image:: img/image132.JPG
[1c03e14]2367
[990c2eb]2368*Figure. The angles for oriented ellipsoid.*
[1c03e14]2369
[990c2eb]2370Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2371(Kline, 2006)
[1c03e14]2372
2373REFERENCE
[bf8c07b]2374
[93b6fcc]2375L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum,
[990c2eb]2376New York, 1987.
[1c03e14]2377
2378
2379
2380.. _LamellarModel:
2381
[77cfcf0]2382**2.1.29. LamellarModel**
[1c03e14]2383
[1127c32]2384This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a uniform SLD and random
2385distribution in solution are assumed. Polydispersity in the bilayer thickness can be applied from the GUI.
[1c03e14]2386
[1127c32]2387*2.1.29.1. Definition*
[1c03e14]2388
[1127c32]2389The scattering intensity *I(q)* is
[1c03e14]2390
[1127c32]2391.. image:: img/image133.PNG
[1c03e14]2392
[1127c32]2393The form factor is
[1c03e14]2394
[1127c32]2395.. image:: img/image134.PNG
[1c03e14]2396
[1127c32]2397where |delta| = bilayer thickness.
[1c03e14]2398
[1127c32]2399The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2400
[1127c32]2401.. image:: img/image040.GIF
[1c03e14]2402
[1127c32]2403The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_bi* = SLD of the bilayer,
2404*sld_sol* = SLD of the solvent, and *bi_thick* = thickness of the bilayer.
[1c03e14]2405
2406==============  ========  =============
2407Parameter name  Units     Default value
2408==============  ========  =============
2409background      |cm^-1|   0.0
2410sld_bi          |Ang^-2|  1e-06
2411bi_thick        |Ang|     50
2412sld_sol         |Ang^-2|  6e-06
2413scale           None      1
2414==============  ========  =============
2415
[1127c32]2416.. image:: img/image135.JPG
[1c03e14]2417
2418*Figure. 1D plot using the default values (w/1000 data point).*
2419
[1127c32]2420Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2421(Kline, 2006).
[1c03e14]2422
2423REFERENCE
2424
[93b6fcc]2425F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2426
[bf8c07b]2427also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2428
2429
2430
2431.. _LamellarFFHGModel:
2432
[77cfcf0]2433**2.1.30. LamellarFFHGModel**
[1c03e14]2434
[1127c32]2435This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a random distribution in
2436solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region.
[1c03e14]2437
[1127c32]2438*2.1.31.1. Definition*
[1c03e14]2439
[1127c32]2440The scattering intensity *I(q)* is
[1c03e14]2441
[1127c32]2442.. image:: img/image136.PNG
[1c03e14]2443
[1127c32]2444The form factor is
[1c03e14]2445
[1127c32]2446.. image:: img/image137.JPG
[1c03e14]2447
[1127c32]2448where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[58eccf6]2449|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(solvent).
[1c03e14]2450
[1127c32]2451The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2452
[1127c32]2453.. image:: img/image040.GIF
[1c03e14]2454
[1127c32]2455The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2456and *sld_head* = SLD of the head group.
[1c03e14]2457
2458==============  ========  =============
2459Parameter name  Units     Default value
2460==============  ========  =============
2461background      |cm^-1|   0.0
2462sld_head        |Ang^-2|  3e-06
2463scale           None      1
2464sld_solvent     |Ang^-2|  6e-06
2465h_thickness     |Ang|     10
2466t_length        |Ang|     15
2467sld_tail        |Ang^-2|  0
2468==============  ========  =============
2469
[1127c32]2470.. image:: img/image138.JPG
[1c03e14]2471
2472*Figure. 1D plot using the default values (w/1000 data point).*
2473
[1127c32]2474Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2475(Kline, 2006).
[1c03e14]2476
2477REFERENCE
2478
[93b6fcc]2479F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2480
[bf8c07b]2481also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2482
[93b6fcc]2483*2014/04/17 - Description reviewed by S King and P Butler.*
[4ed2d0a1]2484
[1c03e14]2485
2486
2487.. _LamellarPSModel:
2488
[77cfcf0]2489**2.1.31. LamellarPSModel**
[1c03e14]2490
[1127c32]2491This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2492distribution in solution are assumed.
[1c03e14]2493
[1127c32]2494*2.1.31.1. Definition*
[1c03e14]2495
[1127c32]2496The scattering intensity *I(q)* is
[1c03e14]2497
[1127c32]2498.. image:: img/image139.PNG
[1c03e14]2499
2500The form factor is
2501
[1127c32]2502.. image:: img/image134.PNG
[1c03e14]2503
[1127c32]2504and the structure factor is
[1c03e14]2505
[1127c32]2506.. image:: img/image140.PNG
[1c03e14]2507
2508where
2509
[1127c32]2510.. image:: img/image141.PNG
[1c03e14]2511
[58eccf6]2512Here *d* = (repeat) spacing, |delta| = bilayer thickness, the contrast |drho| = SLD(headgroup) - SLD(solvent),
[1127c32]2513K = smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (*n_plates*).
[1c03e14]2514
[1127c32]2515NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2516And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2517handled accurately (see the original reference below for more details).
[1c03e14]2518
[1127c32]2519The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2520
[1127c32]2521.. image:: img/image040.GIF
[1c03e14]2522
2523The returned value is in units of |cm^-1|, on absolute scale.
2524
2525==============  ========  =============
2526Parameter name  Units     Default value
2527==============  ========  =============
2528background      |cm^-1|   0.0
2529contrast        |Ang^-2|  5e-06
2530scale           None      1
2531delta           |Ang|     30
2532n_plates        None      20
2533spacing         |Ang|     400
2534caille          |Ang^-2|  0.1
2535==============  ========  =============
2536
[1127c32]2537.. image:: img/image142.JPG
[1c03e14]2538
2539*Figure. 1D plot using the default values (w/6000 data point).*
2540
[1127c32]2541Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2542(Kline, 2006).
[1c03e14]2543
2544REFERENCE
2545
[93b6fcc]2546F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2547
[bf8c07b]2548also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2549
2550
2551
2552.. _LamellarPSHGModel:
2553
[77cfcf0]2554**2.1.32. LamellarPSHGModel**
[1c03e14]2555
[1127c32]2556This model provides the scattering intensity, *I(q)* = *P(q)* \* *S(q)*, for a lyotropic lamellar phase where a random
2557distribution in solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail
2558region.
[1c03e14]2559
[1127c32]2560*2.1.32.1. Definition*
[1c03e14]2561
[1127c32]2562The scattering intensity *I(q)* is
[1c03e14]2563
[1127c32]2564.. image:: img/image139.PNG
[1c03e14]2565
[1127c32]2566The form factor is
[1c03e14]2567
[1127c32]2568.. image:: img/image143.PNG
[1c03e14]2569
2570The structure factor is
2571
[1127c32]2572.. image:: img/image140.PNG
[1c03e14]2573
2574where
2575
[1127c32]2576.. image:: img/image141.PNG
[1c03e14]2577
[1127c32]2578where |delta|\ T = tail length (or *t_length*), |delta|\ H = head thickness (or *h_thickness*),
[58eccf6]2579|drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(headgroup).
[1127c32]2580Here *d* = (repeat) spacing, *K* = smectic bending elasticity, *B* = compression modulus, and N = number of lamellar
2581plates (*n_plates*).
[1c03e14]2582
[1127c32]2583NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.**
2584And due to a complication of the model function, users are responsible for making sure that all the assumptions are
2585handled accurately (see the original reference below for more details).
[1c03e14]2586
[1127c32]2587The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]2588
[1127c32]2589.. image:: img/image040.GIF
[1c03e14]2590
[1127c32]2591The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group,
2592*sld_head* = SLD of the head group, and *sld_solvent* = SLD of the solvent.
[1c03e14]2593
2594==============  ========  =============
2595Parameter name  Units     Default value
2596==============  ========  =============
2597background      |cm^-1|   0.001
2598sld_head        |Ang^-2|  2e-06
2599scale           None      1
2600sld_solvent     |Ang^-2|  6e-06
2601deltaH          |Ang|     2
2602deltaT          |Ang|     10
2603sld_tail        |Ang^-2|  0
2604n_plates        None      30
2605spacing         |Ang|     40
2606caille          |Ang^-2|  0.001
2607==============  ========  =============
2608
[1127c32]2609.. image:: img/image144.JPG
[1c03e14]2610
2611*Figure. 1D plot using the default values (w/6000 data point).*
2612
[1127c32]2613Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2614(Kline, 2006).
[1c03e14]2615
2616REFERENCE
2617
[93b6fcc]2618F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
[1c03e14]2619
[bf8c07b]2620also in J. Phys. Chem. B, 105, (2001) 11081-11088
[1c03e14]2621
2622
2623
2624.. _LamellarPCrystalModel:
2625
[77cfcf0]2626**2.1.33. LamellarPCrystalModel**
[1c03e14]2627
[1127c32]2628This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite
2629in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further
2630characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.**
[1c03e14]2631
[1127c32]2632*2.1.33.1. Definition*
[1c03e14]2633
[1127c32]2634The scattering intensity *I(q)* is calculated as
[1c03e14]2635
[1127c32]2636.. image:: img/image145.JPG
[1c03e14]2637
[1127c32]2638The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness *t*
[1c03e14]2639
[1127c32]2640.. image:: img/image146.JPG
[1c03e14]2641
[1127c32]2642Here, the scale factor is used instead of the mass per area of the bilayer (*G*). The scale factor is the volume
[d4117ccb]2643fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal. *Z*\ :sub:`N`\ *(q)*
2644describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5)
2645from the Bergstrom reference below.
[1c03e14]2646
[1127c32]2647Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values
[1c03e14]2648
[1127c32]2649.. image:: img/image147.JPG
[1c03e14]2650
[1127c32]2651The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
[1c03e14]2652
[1127c32]2653.. image:: img/image040.GIF
[1c03e14]2654
[1127c32]2655The parameters of the model are *Nlayers* = no. of layers, and *pd_spacing* = polydispersity of spacing.
[1c03e14]2656
2657==============  ========  =============
2658Parameter name  Units     Default value
2659==============  ========  =============
2660background      |cm^-1|   0
2661scale           None      1
2662Nlayers         None      20
2663pd_spacing      None      0.2
2664sld_layer       |Ang^-2|  1e-6
2665sld_solvent     |Ang^-2|  6.34e-6
2666spacing         |Ang|     250
2667thickness       |Ang|     33
2668==============  ========  =============
2669
[1127c32]2670.. image:: img/image148.JPG
[1c03e14]2671
[1127c32]2672*Figure. 1D plot using the default values above (w/20000 data point).*
[1c03e14]2673
[1127c32]2674Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
2675(Kline, 2006).
[1c03e14]2676
2677REFERENCE
2678
[93b6fcc]2679M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897
[1c03e14]2680
2681
2682
2683.. _SCCrystalModel:
2684
[77cfcf0]2685**2.1.34. SCCrystalModel**
[1c03e14]2686
[d4117ccb]2687Calculates the scattering from a **simple cubic lattice** with paracrystalline distortion. Thermal vibrations are
2688considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed
2689to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2690
[77cfcf0]2691The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2692
[d4117ccb]2693*2.1.34.1. Definition*
[1c03e14]2694
[4ed2d0a1]2695The scattering intensity *I(q)* is calculated as
[1c03e14]2696
[d4117ccb]2697.. image:: img/image149.JPG
[1c03e14]2698
[d4117ccb]2699where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2700correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2701paracrystalline structure factor for a simple cubic structure.
[1c03e14]2702
[d4117ccb]2703Equation (16) of the 1987 reference is used to calculate *Z(q)*, using equations (13)-(15) from the 1987 paper for
2704*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2705
[d4117ccb]2706The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles of radius *R*
2707and nearest neighbor separation *D* is
[1c03e14]2708
[d4117ccb]2709.. image:: img/image150.JPG
[1c03e14]2710
[d4117ccb]2711The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2712
[d4117ccb]2713.. image:: img/image151.JPG
[1c03e14]2714
[d4117ccb]2715where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2716
[d4117ccb]2717The simple cubic lattice is
[1c03e14]2718
[d4117ccb]2719.. image:: img/image152.JPG
[1c03e14]2720
[d4117ccb]2721For a crystal, diffraction peaks appear at reduced *q*\ -values given by
[1c03e14]2722
[d4117ccb]2723.. image:: img/image153.JPG
[1c03e14]2724
[d4117ccb]2725where for a simple cubic lattice any *h*\ , *k*\ , *l* are allowed and none are forbidden. Thus the peak positions
2726correspond to (just the first 5)
[1c03e14]2727
[d4117ccb]2728.. image:: img/image154.JPG
[1c03e14]2729
[d4117ccb]2730**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2731**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2732SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2733makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2734
2735==============  ========  =============
2736Parameter name  Units     Default value
2737==============  ========  =============
2738background      |cm^-1|   0
2739dnn             |Ang|     220
2740scale           None      1
2741sldSolv         |Ang^-2|  6.3e-06
2742radius          |Ang|     40
2743sld_Sph         |Ang^-2|  3e-06
2744d_factor        None      0.06
2745==============  ========  =============
2746
[d4117ccb]2747This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2748default values.
[bf8c07b]2749
[d4117ccb]2750.. image:: img/image155.JPG
[1c03e14]2751
[d4117ccb]2752*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2753
[d4117ccb]2754The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2755scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2756computation.
[1c03e14]2757
[d4117ccb]2758.. image:: img/image156.JPG
[1c03e14]2759
[d4117ccb]2760.. image:: img/image157.JPG
[1c03e14]2761
[d4117ccb]2762*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2763
[d4117ccb]2764REFERENCE
[1c03e14]2765
[d4117ccb]2766Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2767(Original Paper)
[1c03e14]2768
[d4117ccb]2769Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2770(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2771
2772
2773
2774.. _FCCrystalModel:
2775
[77cfcf0]2776**2.1.35. FCCrystalModel**
[1c03e14]2777
[d4117ccb]2778Calculates the scattering from a **face-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2779are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2780assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2781
[77cfcf0]2782The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2783
[d4117ccb]2784*2.1.35.1. Definition*
[1c03e14]2785
[d4117ccb]2786The scattering intensity *I(q)* is calculated as
[1c03e14]2787
[d4117ccb]2788.. image:: img/image158.JPG
[1c03e14]2789
[d4117ccb]2790where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2791correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2792paracrystalline structure factor for a face-centered cubic structure.
[1c03e14]2793
[d4117ccb]2794Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (23)-(25) from the 1987 paper for
2795*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2796
[d4117ccb]2797The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius
2798*R* and nearest neighbor separation *D* is
[1c03e14]2799
[d4117ccb]2800.. image:: img/image159.JPG
[1c03e14]2801
[d4117ccb]2802The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2803
[d4117ccb]2804.. image:: img/image160.JPG
[1c03e14]2805
[d4117ccb]2806where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2807
[d4117ccb]2808The face-centered cubic lattice is
[1c03e14]2809
[d4117ccb]2810.. image:: img/image161.JPG
[1c03e14]2811
[d4117ccb]2812For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2813
[d4117ccb]2814.. image:: img/image162.JPG
[1c03e14]2815
[d4117ccb]2816where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all even are allowed and reflections where
2817*h*\ , *k*\ , *l* are mixed odd/even are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2818
[d4117ccb]2819.. image:: img/image163.JPG
[1c03e14]2820
[d4117ccb]2821**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2822**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2823SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2824makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2825
2826==============  ========  =============
2827Parameter name  Units     Default value
2828==============  ========  =============
2829background      |cm^-1|   0
2830dnn             |Ang|     220
2831scale           None      1
2832sldSolv         |Ang^-2|  6.3e-06
2833radius          |Ang|     40
2834sld_Sph         |Ang^-2|  3e-06
2835d_factor        None      0.06
2836==============  ========  =============
2837
[d4117ccb]2838This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2839default values.
[1c03e14]2840
[d4117ccb]2841.. image:: img/image164.JPG
[1c03e14]2842
[d4117ccb]2843*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2844
[d4117ccb]2845The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2846scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2847computation.
[1c03e14]2848
[d4117ccb]2849.. image:: img/image165.GIF
[1c03e14]2850
[d4117ccb]2851.. image:: img/image166.JPG
[1c03e14]2852
2853*Figure. 2D plot using the default values (w/200X200 pixels).*
2854
[d4117ccb]2855REFERENCE
[1c03e14]2856
[d4117ccb]2857Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2858(Original Paper)
[1c03e14]2859
[d4117ccb]2860Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2861(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2862
2863
2864
[d4117ccb]2865.. _BCCrystalModel:
[1c03e14]2866
[d4117ccb]2867**2.1.36. BCCrystalModel**
[1c03e14]2868
[d4117ccb]2869Calculates the scattering from a **body-centered cubic lattice** with paracrystalline distortion. Thermal vibrations
2870are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
2871assumed to be isotropic and characterized by a Gaussian distribution.
[1c03e14]2872
[d4117ccb]2873The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale.
[1c03e14]2874
[d4117ccb]2875*2.1.36.1. Definition**
[1c03e14]2876
[d4117ccb]2877The scattering intensity *I(q)* is calculated as
[1c03e14]2878
[d4117ccb]2879.. image:: img/image167.JPG
[1c03e14]2880
[d4117ccb]2881where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume
2882correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the
2883paracrystalline structure factor for a body-centered cubic structure.
[1c03e14]2884
[d4117ccb]2885Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (29)-(31) from the 1987 paper for
2886*Z1*\ , *Z2*\ , and *Z3*\ .
[1c03e14]2887
[d4117ccb]2888The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius
2889*R* and nearest neighbor separation *D* is
[1c03e14]2890
[d4117ccb]2891.. image:: img/image159.JPG
[1c03e14]2892
[d4117ccb]2893The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)*
[1c03e14]2894
[d4117ccb]2895.. image:: img/image160.JPG
[1c03e14]2896
[d4117ccb]2897where *g* is a fractional distortion based on the nearest neighbor distance.
[1c03e14]2898
[d4117ccb]2899The body-centered cubic lattice is
[1c03e14]2900
[d4117ccb]2901.. image:: img/image168.JPG
[1c03e14]2902
[d4117ccb]2903For a crystal, diffraction peaks appear at reduced q-values given by
[1c03e14]2904
[d4117ccb]2905.. image:: img/image162.JPG
[1c03e14]2906
[d4117ccb]2907where for a body-centered cubic lattice, only reflections where (\ *h* + *k* + *l*\ ) = even are allowed and
2908reflections where (\ *h* + *k* + *l*\ ) = odd are forbidden. Thus the peak positions correspond to (just the first 5)
[1c03e14]2909
[d4117ccb]2910.. image:: img/image169.JPG
[1c03e14]2911
[d4117ccb]2912**NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of**
2913**points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is
2914SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This
2915makes a triple integral. Very, very slow. Go get lunch!
[1c03e14]2916
2917==============  ========  =============
2918Parameter name  Units     Default value
2919==============  ========  =============
2920background      |cm^-1|   0
2921dnn             |Ang|     220
2922scale           None      1
2923sldSolv         |Ang^-2|  6.3e-006
2924radius          |Ang|     40
2925sld_Sph         |Ang^-2|  3e-006
2926d_factor        None      0.06
2927==============  ========  =============
2928
[d4117ccb]2929This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above
2930default values.
[bf8c07b]2931
[d4117ccb]2932.. image:: img/image170.JPG
[1c03e14]2933
[d4117ccb]2934*Figure. 1D plot in the linear scale using the default values (w/200 data point).*
[1c03e14]2935
[d4117ccb]2936The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the
2937scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model
2938computation.
[1c03e14]2939
[d4117ccb]2940.. image:: img/image165.GIF
[1c03e14]2941
[d4117ccb]2942.. image:: img/image171.JPG
[1c03e14]2943
[d4117ccb]2944*Figure. 2D plot using the default values (w/200X200 pixels).*
[1c03e14]2945
[d4117ccb]2946REFERENCE
[1c03e14]2947
[d4117ccb]2948Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765
2949(Original Paper)
[1c03e14]2950
[d4117ccb]2951Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856
2952(Corrections to FCC and BCC lattice structure calculation)
[1c03e14]2953
2954
2955
2956.. _ParallelepipedModel:
2957
[77cfcf0]2958**2.1.37. ParallelepipedModel**
[1c03e14]2959
[bf8c07b]2960This model provides the form factor, *P(q)*, for a rectangular cylinder (below) where the form factor is normalized by
[6386cd8]2961the volume of the cylinder. If you need to apply polydispersity, see the RectangularPrismModel_.
[1c03e14]2962
[bf8c07b]2963*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]2964
[bf8c07b]2965where the volume *V* = *A B C* and the averaging < > is applied over all orientations for 1D.
[1c03e14]2966
[bf8c07b]2967For information about polarised and magnetic scattering, click here_.
[1c03e14]2968
[bf8c07b]2969.. image:: img/image087.JPG
[1c03e14]2970
[bf8c07b]2971*2.1.37.1. Definition*
[1c03e14]2972
[bf8c07b]2973**The edge of the solid must satisfy the condition that** *A* < *B*. Then, assuming *a* = *A* / *B* < 1,
2974*b* = *B* / *B* = 1, and *c* = *C* / *B* > 1, the form factor is
[1c03e14]2975
[bf8c07b]2976.. image:: img/image088.PNG
[1c03e14]2977
[bf8c07b]2978and the contrast is defined as
[1c03e14]2979
[bf8c07b]2980.. image:: img/image089.PNG
[1c03e14]2981
[bf8c07b]2982The scattering intensity per unit volume is returned in units of |cm^-1|; ie, *I(q)* = |phi| *P(q)*\ .
[1c03e14]2983
[bf8c07b]2984NB: The 2nd virial coefficient of the parallelpiped is calculated based on the the averaged effective radius
2985(= sqrt(*short_a* \* *short_b* / |pi|)) and length(= *long_c*) values, and used as the effective radius for
2986*S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]2987
[bf8c07b]2988To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
2989|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
2990rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
2991parallel to the *x*-axis of the detector.
[1c03e14]2992
[bf8c07b]2993.. image:: img/image090.JPG
[1c03e14]2994
2995*Figure. Definition of angles for 2D*.
2996
[bf8c07b]2997.. image:: img/image091.JPG
[1c03e14]2998
[bf8c07b]2999*Figure. Examples of the angles for oriented pp against the detector plane.*
[1c03e14]3000
3001==============  ========  =============
3002Parameter name  Units     Default value
3003==============  ========  =============
3004background      |cm^-1|   0.0
3005contrast        |Ang^-2|  5e-06
3006long_c          |Ang|     400
3007short_a         |Ang^-2|  35
3008short_b         |Ang|     75
3009scale           None      1
3010==============  ========  =============
3011
[bf8c07b]3012.. image:: img/image092.JPG
[1c03e14]3013
3014*Figure. 1D plot using the default values (w/1000 data point).*
3015
[bf8c07b]3016*2.1.37.2. Validation of the parallelepiped 2D model*
[1c03e14]3017
[bf8c07b]3018Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output of
3019a 2D calculation over all possible angles. The Figure below shows the comparison where the solid dot refers to averaged
30202D while the line represents the result of the 1D calculation (for the averaging, 76, 180, 76 points are taken for the
3021angles of |theta|, |phi|, and |psi| respectively).
[1c03e14]3022
[bf8c07b]3023.. image:: img/image093.GIF
[1c03e14]3024
3025*Figure. Comparison between 1D and averaged 2D.*
3026
[bf8c07b]3027Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3028(Kline, 2006).
[1c03e14]3029
3030REFERENCE
3031
[93b6fcc]3032P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[1c03e14]3033Equations (1), (13-14). (in German)
3034
3035
3036
3037.. _CSParallelepipedModel:
3038
[77cfcf0]3039**2.1.38. CSParallelepipedModel**
[1c03e14]3040
[bf8c07b]3041Calculates the form factor for a rectangular solid with a core-shell structure. **The thickness and the scattering**
3042**length density of the shell or "rim" can be different on all three (pairs) of faces.**
3043
3044The form factor is normalized by the particle volume *V* such that
[1c03e14]3045
[bf8c07b]3046*P(q)* = *scale* \* <*f*\ :sup:`2`> / *V* + *background*
[1c03e14]3047
[bf8c07b]3048where < > is an average over all possible orientations of the rectangular solid.
[1c03e14]3049
[bf8c07b]3050An instrument resolution smeared version of the model is also provided.
[1c03e14]3051
[bf8c07b]3052*2.1.38.1. Definition*
[1c03e14]3053
[bf8c07b]3054The function calculated is the form factor of the rectangular solid below. The core of the solid is defined by the
3055dimensions *A*, *B*, *C* such that *A* < *B* < *C*.
[1c03e14]3056
[bf8c07b]3057.. image:: img/image087.JPG
[1c03e14]3058
[bf8c07b]3059There are rectangular "slabs" of thickness *tA* that add to the *A* dimension (on the *BC* faces). There are similar
3060slabs on the *AC* (= *tB*) and *AB* (= *tC*) faces. The projection in the *AB* plane is then
[1c03e14]3061
[bf8c07b]3062.. image:: img/image094.JPG
[1c03e14]3063
[bf8c07b]3064The volume of the solid is
[1c03e14]3065
[bf8c07b]3066.. image:: img/image095.PNG
[1c03e14]3067
[bf8c07b]3068**meaning that there are "gaps" at the corners of the solid.**
[1c03e14]3069
[bf8c07b]3070The intensity calculated follows the ParallelepipedModel_, with the core-shell intensity being calculated as the
3071square of the sum of the amplitudes of the core and shell, in the same manner as a CoreShellModel_.
[1c03e14]3072
[bf8c07b]3073**For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such that** *A* < *B* < *C*.
3074**If this inequality is not satisfied, the model will not report an error, and the calculation will not be correct.**
[1c03e14]3075
[bf8c07b]3076FITTING NOTES
3077If the scale is set equal to the particle volume fraction, |phi|, the returned value is the scattered intensity per
3078unit volume; ie, *I(q)* = |phi| *P(q)*\ . However, **no interparticle interference effects are included in this**
3079**calculation.**
[1c03e14]3080
[bf8c07b]3081There are many parameters in this model. Hold as many fixed as possible with known values, or you will certainly end
3082up at a solution that is unphysical.
[1c03e14]3083
[bf8c07b]3084Constraints must be applied during fitting to ensure that the inequality *A* < *B* < *C* is not violated. The
3085calculation will not report an error, but the results will not be correct.
[1c03e14]3086
3087The returned value is in units of |cm^-1|, on absolute scale.
3088
[bf8c07b]3089NB: The 2nd virial coefficient of the CSParallelpiped is calculated based on the the averaged effective radius
3090(= sqrt((*short_a* + 2 *rim_a*) \* (*short_b* + 2 *rim_b*) / |pi|)) and length(= *long_c* + 2 *rim_c*) values, and
3091used as the effective radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
[1c03e14]3092
[bf8c07b]3093To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder using three angles
3094|theta|, |phi| and |bigpsi|. These angles are defined on Figure 2 of the CylinderModel_. The angle |bigpsi| is the
3095rotational angle around the *long_c* axis against the *q* plane. For example, |bigpsi| = 0 when the *short_b* axis is
3096parallel to the *x*-axis of the detector.
[1c03e14]3097
[bf8c07b]3098.. image:: img/image090.JPG
[1c03e14]3099
3100*Figure. Definition of angles for 2D*.
3101
[bf8c07b]3102.. image:: img/image091.JPG
[1c03e14]3103
[bf8c07b]3104*Figure. Examples of the angles for oriented cspp against the detector plane.*
[1c03e14]3105
[bf8c07b]3106This example dataset was produced by running the Macro Plot_CSParallelepiped(), using 100 data points,
3107*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]3108
3109==============  ========  =============
3110Parameter name  Units     Default value
3111==============  ========  =============
3112background      |cm^-1|   0.06
3113sld_pcore       |Ang^-2|  1e-06
3114sld_rimA        |Ang^-2|  2e-06
3115sld_rimB        |Ang^-2|  4e-06
3116sld_rimC        |Ang^-2|  2e-06
3117sld_solv        |Ang^-2|  6e-06
3118rimA            |Ang|     10
3119rimB            |Ang|     10
3120rimC            |Ang|     10
3121longC           |Ang|     400
3122shortA          |Ang|     35
3123midB            |Ang|     75
3124scale           None      1
3125==============  ========  =============
3126
[bf8c07b]3127.. image:: img/image096.JPG
[1c03e14]3128
3129*Figure. 1D plot using the default values (w/256 data points).*
3130
[bf8c07b]3131.. image:: img/image097.JPG
[1c03e14]3132
[bf8c07b]3133*Figure. 2D plot using the default values (w/(256X265) data points).*
[1c03e14]3134
[bf8c07b]3135Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research
3136(Kline, 2006).
[1c03e14]3137
3138REFERENCE
3139
[93b6fcc]3140P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
[bf8c07b]3141Equations (1), (13-14). (in German)
[1c03e14]3142
3143
3144
[6386cd8]3145.. _RectangularPrismModel:
3146
3147**2.1.39. RectangularPrismModel**
3148
3149This model provides the form factor, *P(q)*, for a rectangular prism.
3150
3151Note that this model is almost totally equivalent to the existing ParallelepipedModel_. The only difference is that the
3152way the relevant parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) allows to use polydispersity
3153with this model while keeping the shape of the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity
3154to *a* will generate a distribution of cubes of different sizes).
3155
3156*2.1.39.1. Definition*
3157
3158The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the
3159implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012).
3160
3161The scattering from a massive parallelepiped with an orientation with respect to the scattering vector given by |theta|
3162and |phi| is given by
3163
3164.. math::
3165  A_P\,(q) =  \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \, \times \,
3166  \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \, \times \,
3167  \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi}
3168
3169where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill :math:`A \le B \le C`, |theta| is the angle
3170between the *z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering
3171vector (lying in the *xy* plane) and the *y* axis.
3172
3173The normalized form factor in 1D is obtained averaging over all possible orientations
3174
3175.. math::
3176  P(q) =  \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi
3177
3178The 1D scattering intensity is then calculated as
3179
3180.. math::
3181  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3182
3183where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3184parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3185units) *scale* represents the volume fraction (which is unitless).
3186
3187**The 2D scattering intensity is not computed by this model.**
3188
3189The returned value is scaled to units of |cm^-1| and the parameters of the RectangularPrismModel are the following
3190
3191==============  ========  =============
3192Parameter name  Units     Default value
3193==============  ========  =============
3194scale           None      1
3195short_side      |Ang|     35
3196b2a_ratio       None      1
3197c2a_ratio       None      1
3198sldPipe         |Ang^-2|  6.3e-6
3199sldSolv         |Ang^-2|  1.0e-6
3200background      |cm^-1|   0
3201==============  ========  =============
3202
3203*2.1.39.2. Validation of the RectangularPrismModel*
3204
3205Validation of the code was conducted by comparing the output of the 1D model to the output of the existing
3206parallelepiped model.
3207
3208REFERENCES
3209
3210P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
3211
3212R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3213
3214
3215
3216.. _RectangularHollowPrismModel:
3217
3218**2.1.40. RectangularHollowPrismModel**
3219
3220This model provides the form factor, *P(q)*, for a hollow rectangular parallelepiped with a wall thickness |bigdelta|.
3221
3222*2.1.40.1. Definition*
3223
3224The 1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive
3225parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2 |bigdelta|
3226(Nayuk, 2012).
3227
3228As in the case of the massive parallelepiped, the scattering amplitude is computed for a particular orientation of the
3229parallelepiped with respect to the scattering vector and then averaged over all possible orientations, giving
3230
3231.. math::
3232  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \,
3233  \sin\theta \, d\theta \, d\phi
3234
3235where |theta| is the angle between the *z* axis and the longest axis of the parallelepiped, |phi| is the angle between
3236the scattering vector (lying in the *xy* plane) and the *y* axis, and
3237
3238.. math::
3239  A_{P\Delta}\,(q) =  A \, B \, C \, \times
3240                      \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \frac{C}{2} \cos\theta} \,
3241                      \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}{q \frac{A}{2} \sin\theta \sin\phi} \,
3242                      \frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}{q \frac{B}{2} \sin\theta \cos\phi} -
3243                      8 \, \bigl( \frac{A}{2} - \Delta \bigr) \, \bigl( \frac{B}{2} - \Delta \bigr) \,
3244                      \bigl( \frac{C}{2} - \Delta \bigr) \, \times
3245                      \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]}
3246                      {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \,
3247                      \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]}
3248                      {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \,
3249                      \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]}
3250                      {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \,
3251
3252where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling :math:`A \le B \le C`, and the volume *V*
3253of the parallelepiped is
3254
3255.. math::
3256  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta)
3257
3258The 1D scattering intensity is then calculated as
3259
3260.. math::
3261  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3262
3263where :math:`\rho_{\mbox{pipe}}` is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` is the
3264scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which
3265is unitless).
3266
3267**The 2D scattering intensity is not computed by this model.**
3268
3269The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismModel are the
3270following
3271
3272==============  ========  =============
3273Parameter name  Units     Default value
3274==============  ========  =============
3275scale           None      1
3276short_side      |Ang|     35
3277b2a_ratio       None      1
3278c2a_ratio       None      1
3279thickness       |Ang|     1
3280sldPipe         |Ang^-2|  6.3e-6
3281sldSolv         |Ang^-2|  1.0e-6
3282background      |cm^-1|   0
3283==============  ========  =============
3284
3285*2.1.40.2. Validation of the RectangularHollowPrismModel*
3286
3287Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in
3288(Nayuk, 2012).
3289
3290REFERENCES
3291
3292R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3293
3294
3295
3296.. _RectangularHollowPrismInfThinWallsModel:
3297
3298**2.1.41. RectangularHollowPrismInfThinWallsModel**
3299
3300This model provides the form factor, *P(q)*, for a hollow rectangular prism with infinitely thin walls.
3301
3302*2.1.41.1. Definition*
3303
3304The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber
3305(Nayuk, 2012).
3306
3307Assuming a hollow parallelepiped with infinitely thin walls, edge lengths :math:`A \le B \le C` and presenting an
3308orientation with respect to the scattering vector given by |theta| and |phi|, where |theta| is the angle between the
3309*z* axis and the longest axis of the parallelepiped *C*, and |phi| is the angle between the scattering vector
3310(lying in the *xy* plane) and the *y* axis, the form factor is given by
3311
3312.. math::
3313  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2
3314  \, \sin\theta \, d\theta \, d\phi
3315
3316where
3317
3318.. math::
3319  V = 2AB + 2AC + 2BC
3320
3321.. math::
3322  A_L\,(q) =  8 \times \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3323                              \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr)
3324                              \cos \bigl( q \frac{C}{2} \cos\theta \bigr) }
3325                            {q^2 \, \sin^2\theta \, \sin\phi \cos\phi}
3326
3327.. math::
3328  A_T\,(q) =  A_F\,(q) \times \frac{2 \, \sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{q \, \cos\theta}
3329
3330and
3331
3332.. math::
3333  A_F\,(q) =  4 \frac{ \cos \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3334                       \sin \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3335                     {q \, \cos\phi \, \sin\theta} +
3336              4 \frac{ \sin \bigl( q \frac{A}{2} \sin\phi \sin\theta \bigr)
3337                       \cos \bigl( q \frac{B}{2} \cos\phi \sin\theta \bigr) }
3338                     {q \, \sin\phi \, \sin\theta}
3339
3340The 1D scattering intensity is then calculated as
3341
3342.. math::
3343  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{pipe}} - \rho_{\mbox{solvent}})^2 \times P(q)
3344
3345where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{pipe}}` is the scattering length of the
3346parallelepiped, :math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent, and (if the data are in absolute
3347units) *scale* represents the volume fraction (which is unitless).
3348
3349**The 2D scattering intensity is not computed by this model.**
3350
3351The returned value is scaled to units of |cm^-1| and the parameters of the RectangularHollowPrismInfThinWallModel
3352are the following
3353
3354==============  ========  =============
3355Parameter name  Units     Default value
3356==============  ========  =============
3357scale           None      1
3358short_side      |Ang|     35
3359b2a_ratio       None      1
3360c2a_ratio       None      1
3361sldPipe         |Ang^-2|  6.3e-6
3362sldSolv         |Ang^-2|  1.0e-6
3363background      |cm^-1|   0
3364==============  ========  =============
3365
3366*2.1.41.2. Validation of the RectangularHollowPrismInfThinWallsModel*
3367
3368Validation of the code was conducted  by qualitatively comparing the output of the 1D model to the curves shown in
3369(Nayuk, 2012).
3370
3371REFERENCES
3372
3373R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
3374
3375
3376
[1c03e14]33772.2 Shape-independent Functions
3378-------------------------------
3379
[6386cd8]3380The following are models used for shape-independent SAS analysis.
[1c03e14]3381
[4ed2d0a1]3382.. _Debye:
[1c03e14]3383
[58eccf6]3384**2.2.1. Debye (Gaussian Coil Model)**
[1c03e14]3385
[6386cd8]3386The Debye model is a form factor for a linear polymer chain obeying Gaussian statistics (ie, it is in the theta state).
3387In addition to the radius-of-gyration, *Rg*, a scale factor *scale*, and a constant background term are included in the
3388calculation. **NB: No size polydispersity is included in this model, use the** Poly_GaussCoil_ **Model instead**
[1c03e14]3389
[4ed2d0a1]3390.. image:: img/image172.PNG
[1c03e14]3391
[93b6fcc]3392For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3393
[4ed2d0a1]3394.. image:: img/image040.GIF
[1c03e14]3395
[4ed2d0a1]3396==============  ========  =============
3397Parameter name  Units     Default value
3398==============  ========  =============
[58eccf6]3399scale           None      1.0
3400rg              |Ang|     50.0
3401background      |cm^-1|   0.0
[4ed2d0a1]3402==============  ========  =============
[1c03e14]3403
[4ed2d0a1]3404.. image:: img/image173.JPG
[1c03e14]3405
[4ed2d0a1]3406*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3407
[4ed2d0a1]3408REFERENCE
[1c03e14]3409
[93b6fcc]3410R J Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*, Oxford University Press, New York (2000)
[1c03e14]3411
3412
3413
[4ed2d0a1]3414.. _BroadPeakModel:
[1c03e14]3415
[58eccf6]3416**2.2.2. BroadPeakModel**
[1c03e14]3417
[6386cd8]3418This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many SAS
[93b6fcc]3419spectra are characterized by a broad peak even though they are from amorphous soft materials. For example, soft systems
[6386cd8]3420that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc.
[93b6fcc]3421
3422The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities (such
3423as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures).
[1c03e14]3424
[4ed2d0a1]3425The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3426
[93b6fcc]3427*2.2.2.1. Definition*
3428
3429The scattering intensity *I(q)* is calculated as
[1c03e14]3430
[4ed2d0a1]3431.. image:: img/image174.JPG
[1c03e14]3432
[93b6fcc]3433Here the peak position is related to the d-spacing as *Q0* = 2|pi| / *d0*.
[1c03e14]3434
[93b6fcc]3435For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3436
[4ed2d0a1]3437.. image:: img/image040.GIF
[1c03e14]3438
[93b6fcc]3439==================  ========  =============
3440Parameter name      Units     Default value
3441==================  ========  =============
3442scale_l    (=C)     None      10
3443scale_p    (=A)     None      1e-05
3444length_l (= |xi| )  |Ang|     50
3445q_peak    (=Q0)     |Ang^-1|  0.1
3446exponent_p (=n)     None      2
3447exponent_l (=m)     None      3
3448Background (=B)     |cm^-1|   0.1
3449==================  ========  =============
[1c03e14]3450
[4ed2d0a1]3451.. image:: img/image175.JPG
[1c03e14]3452
[4ed2d0a1]3453*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3454
[4ed2d0a1]3455REFERENCE
[1c03e14]3456
[4ed2d0a1]3457None.
[1c03e14]3458
[93b6fcc]3459*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3460
3461
3462
[4ed2d0a1]3463.. _CorrLength:
[1c03e14]3464
[58eccf6]3465**2.2.3. CorrLength (Correlation Length Model)**
[1c03e14]3466
[6386cd8]3467Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.
[1c03e14]3468
[4ed2d0a1]3469The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3470
[93b6fcc]3471*2.2.3. Definition*
3472
3473The scattering intensity *I(q)* is calculated as
[1c03e14]3474
[4ed2d0a1]3475.. image:: img/image176.JPG
[1c03e14]3476
[93b6fcc]3477The first term describes Porod scattering from clusters (exponent = n) and the second term is a Lorentzian function
3478describing scattering from polymer chains (exponent = *m*). This second term characterizes the polymer/solvent
3479interactions and therefore the thermodynamics. The two multiplicative factors *A* and *C*, the incoherent
3480background *B* and the two exponents *n* and *m* are used as fitting parameters. The final parameter |xi| is a
3481correlation length for the polymer chains. Note that when *m*\ =2 this functional form becomes the familiar Lorentzian
3482function. 
[1c03e14]3483
[93b6fcc]3484For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3485
[4ed2d0a1]3486.. image:: img/image040.GIF
[1c03e14]3487
[93b6fcc]3488====================  ========  =============
3489Parameter name        Units     Default value
3490====================  ========  =============
3491scale_l    (=C)       None      10
3492scale_p    (=A)       None      1e-06
3493length_l   (= |xi| )  |Ang|     50
3494exponent_p (=n)       None      2
3495exponent_l (=m)       None      3
3496Background (=B)       |cm^-1|   0.1
3497====================  ========  =============
[1c03e14]3498
[4ed2d0a1]3499.. image:: img/image177.JPG
[1c03e14]3500
[4ed2d0a1]3501*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3502
[4ed2d0a1]3503REFERENCE
[1c03e14]3504
[93b6fcc]3505B Hammouda, D L Ho and S R Kline, *Insight into Clustering in Poly(ethylene oxide) Solutions*, *Macromolecules*, 37
3506(2004) 6932-6937
[1c03e14]3507
[93b6fcc]3508*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3509
3510
3511
[4ed2d0a1]3512.. _Lorentz:
[1c03e14]3513
[58eccf6]3514**2.2.4. Lorentz (Ornstein-Zernicke Model)**
[1c03e14]3515
[93b6fcc]3516*2.2.4.1. Definition*
3517
3518The Ornstein-Zernicke model is defined by
[1c03e14]3519
[4ed2d0a1]3520.. image:: img/image178.PNG
[1c03e14]3521
[93b6fcc]3522The parameter *L* is the screening length.
[1c03e14]3523
[93b6fcc]3524For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3525
[4ed2d0a1]3526.. image:: img/image040.GIF
[bf8c07b]3527
[4ed2d0a1]3528==============  ========  =============
3529Parameter name  Units     Default value
3530==============  ========  =============
[58eccf6]3531scale           None      1.0
3532length          |Ang|     50.0
3533background      |cm^-1|   0.0
[4ed2d0a1]3534==============  ========  =============
[1c03e14]3535
[4ed2d0a1]3536.. image:: img/image179.JPG
[1c03e14]3537
[93b6fcc]3538* Figure. 1D plot using the default values (w/200 data point).*
3539
3540REFERENCE
3541
3542None.
[1c03e14]3543
3544
3545
[4ed2d0a1]3546.. _DABModel:
[1c03e14]3547
[58eccf6]3548**2.2.5. DABModel (Debye-Anderson-Brumberger Model)**
[1c03e14]3549
[93b6fcc]3550Calculates the scattering from a randomly distributed, two-phase system based on the Debye-Anderson-Brumberger (DAB)
3551model for such systems. The two-phase system is characterized by a single length scale, the correlation length, which
3552is a measure of the average spacing between regions of phase 1 and phase 2. **The model also assumes smooth interfaces**
3553**between the phases** and hence exhibits Porod behavior (I ~ *q*\ :sup:`-4`) at large *q* (*QL* >> 1).
3554
3555The DAB model is ostensibly a development of the earlier Debye-Bueche model.
3556
3557*2.2.5.1. Definition*
[1c03e14]3558
[4ed2d0a1]3559.. image:: img/image180.PNG
[1c03e14]3560
[93b6fcc]3561The parameter *L* is the correlation length.
[1c03e14]3562
[93b6fcc]3563For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3564
[4ed2d0a1]3565.. image:: img/image040.GIF
[1c03e14]3566
[4ed2d0a1]3567==============  ========  =============
3568Parameter name  Units     Default value
3569==============  ========  =============
[58eccf6]3570scale           None      1.0
3571length          |Ang|     50.0
3572background      |cm^-1|   0.0
[4ed2d0a1]3573==============  ========  =============
[1c03e14]3574
[4ed2d0a1]3575.. image:: img/image181.JPG
[1c03e14]3576
[93b6fcc]3577* Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3578
[4ed2d0a1]3579REFERENCE
[1c03e14]3580
[93b6fcc]3581P Debye, H R Anderson, H Brumberger, *Scattering by an Inhomogeneous Solid. II. The Correlation Function*
3582*and its Application*, *J. Appl. Phys.*, 28(6) (1957) 679
[1c03e14]3583
[93b6fcc]3584P Debye, A M Bueche, *Scattering by an Inhomogeneous Solid*, *J. Appl. Phys.*, 20 (1949) 518
[1c03e14]3585
[93b6fcc]3586*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3587
3588
3589
[4ed2d0a1]3590.. _AbsolutePower_Law:
[1c03e14]3591
[58eccf6]3592**2.2.6. AbsolutePower_Law**
[1c03e14]3593
[93b6fcc]3594This model describes a simple power law with background.
[1c03e14]3595
[4ed2d0a1]3596.. image:: img/image182.PNG
[1c03e14]3597
[93b6fcc]3598Note the minus sign in front of the exponent. The parameter *m* should therefore be entered as a **positive** number.
[1c03e14]3599
[4ed2d0a1]3600==============  ========  =============
3601Parameter name  Units     Default value
3602==============  ========  =============
[58eccf6]3603Scale           None      1.0
3604m               None      4
3605Background      |cm^-1|   0.0
[4ed2d0a1]3606==============  ========  =============
[1c03e14]3607
[4ed2d0a1]3608.. image:: img/image183.JPG
[1c03e14]3609
[4ed2d0a1]3610*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3611
[93b6fcc]3612REFERENCE
3613
3614None.
3615
[1c03e14]3616
3617
[93b6fcc]3618.. _TeubnerStrey:
[1c03e14]3619
[93b6fcc]3620**2.2.7. TeubnerStrey (Model)**
[1c03e14]3621
[93b6fcc]3622This function calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike the
3623DABModel_ this function generates a peak.
3624
3625*2.2.7.1. Definition*
[1c03e14]3626
[4ed2d0a1]3627.. image:: img/image184.PNG
[1c03e14]3628
[93b6fcc]3629For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3630
[4ed2d0a1]3631.. image:: img/image040.GIF
[1c03e14]3632
[4ed2d0a1]3633==============  ========  =============
3634Parameter name  Units     Default value
3635==============  ========  =============
[58eccf6]3636scale           None      0.1
3637c1              None      -30.0
3638c2              None      5000.0
3639background      |cm^-1|   0.0
[4ed2d0a1]3640==============  ========  =============
[1c03e14]3641
[4ed2d0a1]3642.. image:: img/image185.JPG
[1c03e14]3643
[4ed2d0a1]3644*Figure. 1D plot using the default values (w/200 data point).*
[1c03e14]3645
[4ed2d0a1]3646REFERENCE
[1c03e14]3647
[93b6fcc]3648M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195
[1c03e14]3649
[93b6fcc]3650K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343
[1c03e14]3651
3652
3653
[4ed2d0a1]3654.. _FractalModel:
[1c03e14]3655
[58eccf6]3656**2.2.8. FractalModel**
[1c03e14]3657
[93b6fcc]3658Calculates the scattering from fractal-like aggregates built from spherical building blocks following the Texiera
3659reference.
3660
3661The value returned is in |cm^-1|\ .
3662
3663*2.2.8.1. Definition*
[1c03e14]3664
[4ed2d0a1]3665.. image:: img/image186.PNG
[1c03e14]3666
[93b6fcc]3667The *scale* parameter is the volume fraction of the building blocks, *R0* is the radius of the building block, *Df* is
3668the fractal dimension, |xi| is the correlation length, |rho|\ *solvent* is the scattering length density of the
3669solvent, and |rho|\ *block* is the scattering length density of the building blocks.
[1c03e14]3670
[93b6fcc]3671**Polydispersity on the radius is provided for.**
[1c03e14]3672
[93b6fcc]3673For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3674
[4ed2d0a1]3675.. image:: img/image040.GIF
[1c03e14]3676
[4ed2d0a1]3677==============  ========  =============
3678Parameter name  Units     Default value
3679==============  ========  =============
[58eccf6]3680scale           None      0.05
3681radius          |Ang|     5.0
3682fractal_dim     None      2
3683corr_length     |Ang|     100.0
3684block_sld       |Ang^-2|  2e-6
3685solvent_sld     |Ang^-2|  6e-6
3686background      |cm^-1|   0.0
[4ed2d0a1]3687==============  ========  =============
[1c03e14]3688
[4ed2d0a1]3689.. image:: img/image187.JPG
[1c03e14]3690
3691*Figure. 1D plot using the default values (w/200 data point).*
3692
[4ed2d0a1]3693REFERENCE
[1c03e14]3694
[93b6fcc]3695J Teixeira, *J. Appl. Cryst.*, 21 (1988) 781-785
[1c03e14]3696
3697
3698
[4ed2d0a1]3699.. _MassFractalModel:
[1c03e14]3700
[4ed2d0a1]3701**2.2.9. MassFractalModel**
[1c03e14]3702
[93b6fcc]3703Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3704
3705*2.2.9.1. Definition*
[1c03e14]3706
[4ed2d0a1]3707.. image:: img/mass_fractal_eq1.JPG
[1c03e14]3708
[93b6fcc]3709where *R* is the radius of the building block, *Dm* is the **mass** fractal dimension, |zeta| is the cut-off length,
3710|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3711density of particles.
[1c03e14]3712
[93b6fcc]3713Note:  The mass fractal dimension *Dm* is only valid if 1 < mass_dim < 6. It is also only valid over a limited
3714*q* range (see the reference for details).
[1c03e14]3715
[4ed2d0a1]3716==============  ========  =============
3717Parameter name  Units     Default value
3718==============  ========  =============
[58eccf6]3719scale           None      1
3720radius          |Ang|     10.0
3721mass_dim        None      1.9
3722co_length       |Ang|     100.0
3723background      |cm^-1|   0.0
[4ed2d0a1]3724==============  ========  =============
[1c03e14]3725
[4ed2d0a1]3726.. image:: img/mass_fractal_fig1.JPG
[1c03e14]3727
[93b6fcc]3728*Figure. 1D plot using default values.*
[1c03e14]3729
[4ed2d0a1]3730REFERENCE
[1c03e14]3731
[93b6fcc]3732D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3733Equation(9)
[1c03e14]3734
[93b6fcc]3735*2013/09/09 - Description reviewed by King, S and Parker, P.*
[1c03e14]3736
3737
3738
[4ed2d0a1]3739.. _SurfaceFractalModel:
[1c03e14]3740
[4ed2d0a1]3741**2.2.10. SurfaceFractalModel**
[1c03e14]3742
[93b6fcc]3743Calculates the scattering from fractal-like aggregates based on the Mildner reference.
3744
3745*2.2.10.1. Definition*
[1c03e14]3746
[4ed2d0a1]3747.. image:: img/surface_fractal_eq1.GIF 
[1c03e14]3748
[93b6fcc]3749where *R* is the radius of the building block, *Ds* is the **surface** fractal dimension, |zeta| is the cut-off length,
3750|rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *particle* is the scattering length
3751density of particles.
[1c03e14]3752
[93b6fcc]3753Note:  The surface fractal dimension *Ds* is only valid if 1 < surface_dim < 3. It is also only valid over a limited
3754*q* range (see the reference for details).
[1c03e14]3755
[4ed2d0a1]3756==============  ========  =============
3757Parameter name  Units     Default value
3758==============  ========  =============
[58eccf6]3759scale           None      1
3760radius          |Ang|     10.0
3761surface_dim     None      2.0
3762co_length       |Ang|     500.0
3763background      |cm^-1|   0.0
[4ed2d0a1]3764==============  ========  =============
[1c03e14]3765
[4ed2d0a1]3766.. image:: img/surface_fractal_fig1.JPG
[1c03e14]3767
[93b6fcc]3768*Figure. 1D plot using default values.*
[1c03e14]3769
[4ed2d0a1]3770REFERENCE
[1c03e14]3771
[93b6fcc]3772D Mildner and P Hall, *J. Phys. D: Appl. Phys.*,  19 (1986) 1535-1545
3773Equation(13)
[1c03e14]3774
3775
3776
[4ed2d0a1]3777.. _MassSurfaceFractal:
[1c03e14]3778
[58eccf6]3779**2.2.11. MassSurfaceFractal (Model)**
[1c03e14]3780
[93b6fcc]3781A number of natural and commercial processes form high-surface area materials as a result of the vapour-phase
3782aggregation of primary particles. Examples of such materials include soots, aerosols, and fume or pyrogenic silicas.
3783These are all characterised by cluster mass distributions (sometimes also cluster size distributions) and internal
3784surfaces that are fractal in nature. The scattering from such materials displays two distinct breaks in log-log
3785representation, corresponding to the radius-of-gyration of the primary particles, *rg*, and the radius-of-gyration of
3786the clusters (aggregates), *Rg*. Between these boundaries the scattering follows a power law related to the mass
3787fractal dimension, *Dm*, whilst above the high-Q boundary the scattering follows a power law related to the surface
3788fractal dimension of the primary particles, *Ds*.
3789
3790*2.2.11.1. Definition*
3791
3792The scattered intensity *I(q)* is  calculated using a modified Ornstein-Zernicke equation
[1c03e14]3793
[4ed2d0a1]3794.. image:: img/masssurface_fractal_eq1.JPG 
[1c03e14]3795
[93b6fcc]3796where *Rg* is the size of the cluster, *rg* is the size of the primary particle, *Ds* is the surface fractal dimension,
3797*Dm* is the mass fractal dimension, |rho|\ *solvent* is the scattering length density of the solvent, and |rho|\ *p* is
3798the scattering length density of particles.
[1c03e14]3799
[93b6fcc]3800Note:  The surface (*Ds*) and mass (*Dm*) fractal dimensions are only valid if 0 < *surface_dim* < 6,
38010 < *mass_dim* < 6, and (*surface_dim*+*mass_dim*) < 6. 
[1c03e14]3802
[4ed2d0a1]3803==============  ========  =============
3804Parameter name  Units     Default value
3805==============  ========  =============
[58eccf6]3806scale           None      1
3807primary_rg      |Ang|     4000.0
3808cluster_rg      |Ang|     86.7
3809surface_dim     None      2.3
3810mass_dim        None      1.8
3811background      |cm^-1|   0.0
[4ed2d0a1]3812==============  ========  =============
[1c03e14]3813
[4ed2d0a1]3814.. image:: img/masssurface_fractal_fig1.JPG
[1c03e14]3815
[93b6fcc]3816*Figure. 1D plot using default values.*
[1c03e14]3817
[4ed2d0a1]3818REFERENCE
[1c03e14]3819
[93b6fcc]3820P Schmidt, *J Appl. Cryst.*, 24 (1991) 414-435
3821Equation(19)
[1c03e14]3822
[93b6fcc]3823A J Hurd, D W Schaefer, J E Martin, *Phys. Rev. A*, 35 (1987) 2361-2364
3824Equation(2)
[1c03e14]3825
3826
3827
[4ed2d0a1]3828.. _FractalCoreShell:
[1c03e14]3829
[58eccf6]3830**2.2.12. FractalCoreShell (Model)**
[1c03e14]3831
[93b6fcc]3832Calculates the scattering from a fractal structure with a primary building block of core-shell spheres, as opposed to
3833just homogeneous spheres in the FractalModel_. This model could find use for aggregates of coated particles, or
3834aggregates of vesicles.
3835
3836The returned value is scaled to units of |cm^-1|, absolute scale.
3837
3838*2.2.12.1. Definition*
[1c03e14]3839
[4ed2d0a1]3840.. image:: img/fractcore_eq1.GIF
[1c03e14]3841
[93b6fcc]3842The form factor *P(q)* is that from CoreShellModel_ with *bkg* = 0
[1c03e14]3843
[4ed2d0a1]3844.. image:: img/image013.PNG
[1c03e14]3845
[93b6fcc]3846while the fractal structure factor S(q) is
[1c03e14]3847
[4ed2d0a1]3848.. image:: img/fractcore_eq3.gif
[1c03e14]3849
[93b6fcc]3850where *Df* = frac_dim, |xi| = cor_length, *rc* = (core) radius, and *scale* = volume fraction.
[1c03e14]3851
[93b6fcc]3852The fractal structure is as documented in the FractalModel_. Polydispersity of radius and thickness is provided for.
[1c03e14]3853
[93b6fcc]3854For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3855
[4ed2d0a1]3856.. image:: img/image040.GIF
[1c03e14]3857
[4ed2d0a1]3858==============  ========  =============
3859Parameter name  Units     Default value
3860==============  ========  =============
[58eccf6]3861volfraction     None      0.05
3862frac_dim        None      2
3863thickness       |Ang|     5.0
3864radius          |Ang|     20.0
3865cor_length      |Ang|     100.0
3866core_sld        |Ang^-2|  3.5e-6
3867shell_sld       |Ang^-2|  1e-6
3868solvent_sld     |Ang^-2|  6.35e-6
3869background      |cm^-1|   0.0
[4ed2d0a1]3870==============  ========  =============
[1c03e14]3871
[4ed2d0a1]3872.. image:: img/image188.JPG
[1c03e14]3873
[4ed2d0a1]3874*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3875
[4ed2d0a1]3876REFERENCE
[1c03e14]3877
[93b6fcc]3878See the CoreShellModel_ and FractalModel_ descriptions.
[1c03e14]3879
3880
3881
[4ed2d0a1]3882.. _GaussLorentzGel:
[1c03e14]3883
[58eccf6]3884**2.2.13. GaussLorentzGel(Model)**
[1c03e14]3885
[93b6fcc]3886Calculates the scattering from a gel structure, but typically a physical rather than chemical network. It is modeled as
3887a sum of a low-*q* exponential decay plus a lorentzian at higher *q*-values.
[1c03e14]3888
[6386cd8]3889Also see the GelFitModel_.
3890
[4ed2d0a1]3891The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]3892
[93b6fcc]3893*2.2.13.1. Definition*
3894
3895The scattering intensity *I(q)* is calculated as (eqn 5 from the reference)
[1c03e14]3896
[4ed2d0a1]3897.. image:: img/image189.JPG
[1c03e14]3898
[93b6fcc]3899|bigzeta| is the length scale of the static correlations in the gel, which can be attributed to the "frozen-in"
3900crosslinks. |xi| is the dynamic correlation length, which can be attributed to the fluctuating polymer chains between
3901crosslinks. *I*\ :sub:`G`\ *(0)* and *I*\ :sub:`L`\ *(0)* are the scaling factors for each of these structures. **Think carefully about how**
3902**these map to your particular system!**
[1c03e14]3903
[93b6fcc]3904NB: The peaked structure at higher *q* values (Figure 2 from the reference) is not reproduced by the model. Peaks can
3905be introduced into the model by summing this model with the PeakGaussModel_ function.
[1c03e14]3906
[93b6fcc]3907For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3908
[4ed2d0a1]3909.. image:: img/image040.GIF
[1c03e14]3910
[58eccf6]3911===================================  ========  =============
3912Parameter name                       Units     Default value
3913===================================  ========  =============
3914dyn_colength (=dynamic corr length)  |Ang|     20.0
3915scale_g       (=Gauss scale factor)  None      100
3916scale_l  (=Lorentzian scale factor)  None      50
3917stat_colength (=static corr length)  |Ang|     100.0
3918background                           |cm^-1|   0.0
3919===================================  ========  =============
[1c03e14]3920
[4ed2d0a1]3921.. image:: img/image190.JPG
[1c03e14]3922
[4ed2d0a1]3923*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]3924
[4ed2d0a1]3925REFERENCE
[1c03e14]3926
[93b6fcc]3927G Evmenenko, E Theunissen, K Mortensen, H Reynaers, *Polymer*, 42 (2001) 2907-2913
[1c03e14]3928
3929
3930
[4ed2d0a1]3931.. _BEPolyelectrolyte:
[1c03e14]3932
[58eccf6]3933**2.2.14. BEPolyelectrolyte (Model)**
[1c03e14]3934
[93b6fcc]3935Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived by Borue and Erukhimovich.
3936
3937The value returned is in |cm^-1|.
3938
3939*2.2.14.1. Definition*
[1c03e14]3940
[4ed2d0a1]3941.. image:: img/image191.PNG
[1c03e14]3942
[93b6fcc]3943where *K* is the contrast factor for the polymer, *Lb* is the Bjerrum length, *h* is the virial parameter, *b* is the
3944monomer length, *Cs* is the concentration of monovalent salt, |alpha| is the ionization degree, *Ca* is the polymer
3945molar concentration, and *background* is the incoherent background.
[1c03e14]3946
[93b6fcc]3947For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3948
[4ed2d0a1]3949.. image:: img/image040.GIF
[1c03e14]3950
[4ed2d0a1]3951==============  ========  =============
3952Parameter name  Units     Default value
3953==============  ========  =============
[58eccf6]3954K               barns     10
3955Lb              |Ang|     7.1
3956h               |Ang^-3|  12
3957b               |Ang|     10
3958Cs              mol/L     0
3959alpha           None      0.05
3960Ca              mol/L     0.7
3961background      |cm^-1|   0.0
[4ed2d0a1]3962==============  ========  =============
[1c03e14]3963
[58eccf6]3964NB: 1 barn = 10\ :sup:`-24` |cm^2|
3965
[4ed2d0a1]3966REFERENCE
[1c03e14]3967
[93b6fcc]3968V Y Borue, I Y Erukhimovich, *Macromolecules*, 21 (1988) 3240
[1c03e14]3969
[93b6fcc]3970J F Joanny, L Leibler, *Journal de Physique*, 51 (1990) 545
[1c03e14]3971
[93b6fcc]3972A Moussaid, F Schosseler, J P Munch, S Candau, *J. Journal de Physique II France*, 3 (1993) 573
[1c03e14]3973
[93b6fcc]3974E Raphael, J F Joanny, *Europhysics Letters*, 11 (1990) 179
[1c03e14]3975
3976
3977
[4ed2d0a1]3978.. _Guinier:
[1c03e14]3979
[4ed2d0a1]3980**2.2.15. Guinier (Model)**
[1c03e14]3981
[93b6fcc]3982This model fits the Guinier function
[1c03e14]3983
[4ed2d0a1]3984.. image:: img/image192.PNG
[1c03e14]3985
[93b6fcc]3986to the data directly without any need for linearisation (*cf*. Ln *I(q)* vs *q*\ :sup:`2`).
3987
3988For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]3989
[4ed2d0a1]3990.. image:: img/image040.GIF
[1c03e14]3991
[4ed2d0a1]3992==============  ========  =============
3993Parameter name  Units     Default value
3994==============  ========  =============
[58eccf6]3995scale           |cm^-1|   1.0
3996Rg              |Ang|     0.1
[4ed2d0a1]3997==============  ========  =============
[1c03e14]3998
[93b6fcc]3999REFERENCE
4000
4001A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley & Sons, New York (1955)
4002
[1c03e14]4003
4004
[4ed2d0a1]4005.. _GuinierPorod:
[1c03e14]4006
[4ed2d0a1]4007**2.2.16. GuinierPorod (Model)**
[1c03e14]4008
[93b6fcc]4009Calculates the scattering for a generalized Guinier/power law object. This is an empirical model that can be used to
4010determine the size and dimensionality of scattering objects, including asymmetric objects such as rods or platelets, and
4011shapes intermediate between spheres and rods or between rods and platelets.
[1c03e14]4012
[93b6fcc]4013The result is in the units of |cm^-1|, absolute scale.
[1c03e14]4014
[93b6fcc]4015*2.2.16.1 Definition*
[1c03e14]4016
[93b6fcc]4017The following functional form is used
[1c03e14]4018
[93b6fcc]4019.. image:: img/image193.JPG
[1c03e14]4020
[93b6fcc]4021This is based on the generalized Guinier law for such elongated objects (see the Glatter reference below). For 3D
4022globular objects (such as spheres), *s* = 0 and one recovers the standard Guinier_ formula. For 2D symmetry (such as
4023for rods) *s* = 1, and for 1D symmetry (such as for lamellae or platelets) *s* = 2. A dimensionality parameter (3-*s*)
4024is thus defined, and is 3 for spherical objects, 2 for rods, and 1 for plates.
4025
4026Enforcing the continuity of the Guinier and Porod functions and their derivatives yields
[1c03e14]4027
[4ed2d0a1]4028.. image:: img/image194.JPG
[1c03e14]4029
[4ed2d0a1]4030and
[1c03e14]4031
[4ed2d0a1]4032.. image:: img/image195.JPG
[1c03e14]4033
[93b6fcc]4034Note that
[1c03e14]4035
[6386cd8]4036 the radius-of-gyration for a sphere of radius *R* is given by *Rg* = *R* sqrt(3/5)
[1c03e14]4037
[6386cd8]4038 the cross-sectional radius-of-gyration for a randomly oriented cylinder of radius *R* is given by *Rg* = *R* / sqrt(2)
[1c03e14]4039
[6386cd8]4040 the cross-sectional radius-of-gyration of a randomly oriented lamella of thickness *T* is given by *Rg* = *T* / sqrt(12)
[1c03e14]4041
[93b6fcc]4042For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4043
[4ed2d0a1]4044.. image:: img/image008.PNG
[1c03e14]4045
[58eccf6]4046==============================  ========  =============
4047Parameter name                  Units     Default value
4048==============================  ========  =============
4049scale      (=Guinier scale, G)  |cm^-1|   1.0
4050rg                              |Ang|     100
4051dim (=dimensional variable, s)  None      1
4052m            (=Porod exponent)  None      3
4053background                      |cm^-1|   0.1
4054==============================  ========  =============
[1c03e14]4055
[4ed2d0a1]4056.. image:: img/image196.JPG
[1c03e14]4057
[4ed2d0a1]4058*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4059
[93b6fcc]4060REFERENCE
4061
4062A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
4063
4064O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982)
4065Check out Chapter 4 on Data Treatment, pages 155-156.
4066
[1c03e14]4067
4068
[4ed2d0a1]4069.. _PorodModel:
[1c03e14]4070
[4ed2d0a1]4071**2.2.17. PorodModel**
[1c03e14]4072
[6386cd8]4073This model fits the Porod function
[1c03e14]4074
[4ed2d0a1]4075.. image:: img/image197.PNG
[1c03e14]4076
[6386cd8]4077to the data directly without any need for linearisation (*cf*. Log *I(q)* vs Log *q*).
[1c03e14]4078
[6386cd8]4079Here *C* is the scale factor and *Sv* is the specific surface area (ie, surface area / volume) of the sample, and
4080|drho| is the contrast factor.
[1c03e14]4081
[93b6fcc]4082For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4083
[4ed2d0a1]4084.. image:: img/image040.GIF
[1c03e14]4085
[4ed2d0a1]4086==============  ========  =============
4087Parameter name  Units     Default value
4088==============  ========  =============
[58eccf6]4089scale           |Ang^-4|  0.1
4090background      |cm^-1|   0
[4ed2d0a1]4091==============  ========  =============
[1c03e14]4092
[6386cd8]4093REFERENCE
4094
4095None.
4096
[1c03e14]4097
4098
[4ed2d0a1]4099.. _PeakGaussModel:
[1c03e14]4100
[4ed2d0a1]4101**2.2.18. PeakGaussModel**
[1c03e14]4102
[6386cd8]4103This model describes a Gaussian shaped peak on a flat background
[1c03e14]4104
[4ed2d0a1]4105.. image:: img/image198.PNG
[1c03e14]4106
[6386cd8]4107with the peak having height of *I0* centered at *q0* and having a standard deviation of *B*.  The FWHM (full-width
4108half-maximum) is 2.354 B.  
[1c03e14]4109
[93b6fcc]4110For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4111
[4ed2d0a1]4112.. image:: img/image040.GIF
[1c03e14]4113
[4ed2d0a1]4114==============  ========  =============
4115Parameter name  Units     Default value
4116==============  ========  =============
[58eccf6]4117scale           |cm^-1|   100
4118q0              |Ang^-1|  0.05
4119B               |Ang^-1|  0.005
4120background      |cm^-1|   1
[4ed2d0a1]4121==============  ========  =============
[1c03e14]4122
[4ed2d0a1]4123.. image:: img/image199.JPG
[1c03e14]4124
[4ed2d0a1]4125*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4126
[6386cd8]4127REFERENCE
4128
4129None.
4130
[1c03e14]4131
4132
[4ed2d0a1]4133.. _PeakLorentzModel:
[1c03e14]4134
[4ed2d0a1]4135**2.2.19. PeakLorentzModel**
[1c03e14]4136
[6386cd8]4137This model describes a Lorentzian shaped peak on a flat background
[1c03e14]4138
[4ed2d0a1]4139.. image:: img/image200.PNG
[1c03e14]4140
[6386cd8]4141with the peak having height of *I0* centered at *q0* and having a HWHM (half-width half-maximum) of B. 
[1c03e14]4142
[93b6fcc]4143For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4144
[4ed2d0a1]4145.. image:: img/image040.GIF
[1c03e14]4146
[4ed2d0a1]4147==============  ========  =============
4148Parameter name  Units     Default value
4149==============  ========  =============
[58eccf6]4150scale           |cm^-1|   100
4151q0              |Ang^-1|  0.05
4152B               |Ang^-1|  0.005
4153background      |cm^-1|     1
[4ed2d0a1]4154==============  ========  =============
[1c03e14]4155
[4ed2d0a1]4156.. image:: img/image201.JPG
[1c03e14]4157
[4ed2d0a1]4158*Figure. 1D plot using the default values (w/500 data points).*
[1c03e14]4159
[6386cd8]4160REFERENCE
4161
4162None.
4163
[1c03e14]4164
4165
[4ed2d0a1]4166.. _Poly_GaussCoil:
[1c03e14]4167
[4ed2d0a1]4168**2.2.20. Poly_GaussCoil (Model)**
[1c03e14]4169
[6386cd8]4170This model calculates an empirical functional form for the scattering from a **polydisperse** polymer chain in the
4171theta state assuming a Schulz-Zimm type molecular weight distribution. Polydispersity on the radius-of-gyration is also
4172provided for.
[1c03e14]4173
[4ed2d0a1]4174The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4175
[6386cd8]4176*2.2.20.1. Definition*
4177
4178The scattering intensity *I(q)* is calculated as
4179
[4ed2d0a1]4180.. image:: img/image202.PNG
[1c03e14]4181
[6386cd8]4182where the dimensionless chain dimension is
[1c03e14]4183
[4ed2d0a1]4184.. image:: img/image203.PNG
[1c03e14]4185
[6386cd8]4186and the polydispersity is
[1c03e14]4187
[4ed2d0a1]4188.. image:: img/image204.PNG
[1c03e14]4189
[93b6fcc]4190For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4191
[4ed2d0a1]4192.. image:: img/image040.GIF
[1c03e14]4193
[6386cd8]4194This example dataset is produced using 200 data points, using 200 data points,
4195*qmin* = 0.001 |Ang^-1|, *qmax* = 0.7 |Ang^-1| and the default values
[1c03e14]4196
[4ed2d0a1]4197==============  ========  =============
4198Parameter name  Units     Default value
4199==============  ========  =============
[58eccf6]4200scale           None      1.0
4201rg              |Ang|     60.0
4202poly_m (Mw/Mn)  None      2
4203background      |cm^-1|   0.001
[4ed2d0a1]4204==============  ========  =============
[1c03e14]4205
[4ed2d0a1]4206.. image:: img/image205.JPG
[1c03e14]4207
4208*Figure. 1D plot using the default values (w/200 data point).*
4209
[bf8c07b]4210REFERENCE
[1c03e14]4211
[6386cd8]4212O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982)
4213Page 404
[1c03e14]4214
[93b6fcc]4215J S Higgins, and H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications (1996)
[4ed2d0a1]4216
[1c03e14]4217
[4ed2d0a1]4218
4219.. _PolyExclVolume:
4220
4221**2.2.21. PolymerExclVolume (Model)**
[1c03e14]4222
[6386cd8]4223This model describes the scattering from polymer chains subject to excluded volume effects, and has been used as a
4224template for describing mass fractals.
[1c03e14]4225
[4ed2d0a1]4226The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4227
[6386cd8]4228*2.2.21.1 Definition*
[1c03e14]4229
[6386cd8]4230The form factor  was originally presented in the following integral form (Benoit, 1957)
[1c03e14]4231
[6386cd8]4232.. image:: img/image206.JPG
[1c03e14]4233
[6386cd8]4234where |nu| is the excluded volume parameter (which is related to the Porod exponent *m* as |nu| = 1 / *m*), *a* is the
4235statistical segment length of the polymer chain, and *n* is the degree of polymerization. This integral was later put
4236into an almost analytical form as follows (Hammouda, 1993)
[1c03e14]4237
[6386cd8]4238.. image:: img/image207.JPG
[1c03e14]4239
[6386cd8]4240where |gamma|\ *(x,U)* is the incomplete gamma function
[1c03e14]4241
[4ed2d0a1]4242.. image:: img/image208.JPG
[1c03e14]4243
[6386cd8]4244and the variable *U* is given in terms of the scattering vector *Q* as
[1c03e14]4245
[4ed2d0a1]4246.. image:: img/image209.JPG
[1c03e14]4247
[6386cd8]4248The square of the radius-of-gyration is defined as
[1c03e14]4249
[4ed2d0a1]4250.. image:: img/image210.JPG
[1c03e14]4251
[6386cd8]4252Note that this model applies only in the mass fractal range (ie, 5/3 <= *m* <= 3) and **does not** apply to surface
4253fractals (3 < *m* <= 4). It also does not reproduce the rigid rod limit (*m* = 1) because it assumes chain flexibility
4254from the outset. It may cover a portion of the semi-flexible chain range (1 < *m* < 5/3).
[1c03e14]4255
[6386cd8]4256A low-*Q* expansion yields the Guinier form and a high-*Q* expansion yields the Porod form which is given by
[1c03e14]4257
[4ed2d0a1]4258.. image:: img/image211.JPG
[1c03e14]4259
[6386cd8]4260Here |biggamma|\ *(x)* = |gamma|\ *(x,inf)* is the gamma function.
4261
4262The asymptotic limit is dominated by the first term
[1c03e14]4263
[4ed2d0a1]4264.. image:: img/image212.JPG
[1c03e14]4265
[6386cd8]4266The special case when |nu| = 0.5 (or *m* = 1/|nu| = 2) corresponds to Gaussian chains for which the form factor is given
4267by the familiar Debye_ function.
[1c03e14]4268
[4ed2d0a1]4269.. image:: img/image213.JPG
[1c03e14]4270
[93b6fcc]4271For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4272
[4ed2d0a1]4273.. image:: img/image040.GIF
[1c03e14]4274
[6386cd8]4275This example dataset is produced using 200 data points, *qmin* = 0.001 |Ang^-1|, *qmax* = 0.2 |Ang^-1| and the default
4276values
[1c03e14]4277
[58eccf6]4278===================  ========  =============
4279Parameter name       Units     Default value
4280===================  ========  =============
4281scale                None      1.0
4282rg                   |Ang|     60.0
4283m (=Porod exponent)  None      3
4284background           |cm^-1|   0.0
4285===================  ========  =============
[1c03e14]4286
[4ed2d0a1]4287.. image:: img/image214.JPG
[1c03e14]4288
4289*Figure. 1D plot using the default values (w/500 data points).*
4290
[6386cd8]4291REFERENCE
[1c03e14]4292
[6386cd8]4293H Benoit, *Comptes Rendus*, 245 (1957) 2244-2247
[1c03e14]4294
[6386cd8]4295B Hammouda, *SANS from Homogeneous Polymer Mixtures ­ A Unified Overview*, *Advances in Polym. Sci.*, 106 (1993) 87-133
[4ed2d0a1]4296
[1c03e14]4297
4298
[6386cd8]4299.. _RPA10Model:
[1c03e14]4300
[6386cd8]4301**2.2.22. RPA10Model**
[1c03e14]4302
[6386cd8]4303Calculates the macroscopic scattering intensity (units of |cm^-1|) for a multicomponent homogeneous mixture of polymers
4304using the Random Phase Approximation. This general formalism contains 10 specific cases
[1c03e14]4305
[6386cd8]4306Case 0: C/D binary mixture of homopolymers
[1c03e14]4307
[6386cd8]4308Case 1: C-D diblock copolymer
[1c03e14]4309
[6386cd8]4310Case 2: B/C/D ternary mixture of homopolymers
[1c03e14]4311
[6386cd8]4312Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
[1c03e14]4313
[6386cd8]4314Case 4: B-C-D triblock copolymer
[1c03e14]4315
[6386cd8]4316Case 5: A/B/C/D quaternary mixture of homopolymers
[1c03e14]4317
[6386cd8]4318Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
[1c03e14]4319
[6386cd8]4320Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
[1c03e14]4321
[6386cd8]4322Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
[1c03e14]4323
[6386cd8]4324Case 9: A-B-C-D tetra-block copolymer
[1c03e14]4325
[6386cd8]4326**NB: these case numbers are different from those in the NIST SANS package!**
[1c03e14]4327
[6386cd8]4328Only one case can be used at any one time.
[1c03e14]4329
[6386cd8]4330The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4331
[6386cd8]4332The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the homogeneous
4333mixed-phase region.
[1c03e14]4334
[6386cd8]4335**Component D is assumed to be the "background" component (ie, all contrasts are calculated with respect to**
4336**component D).** So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component D)]\ :sup:`2`.
[1c03e14]4337
[6386cd8]4338Depending on which case is being used, the number of fitting parameters - the segment lengths (ba, bb, etc) and |chi|
4339parameters (Kab, Kac, etc) - vary. The *scale* parameter should be held equal to unity.
[1c03e14]4340
[6386cd8]4341The input parameters are the degrees of polymerization, the volume fractions, the specific volumes, and the neutron
4342scattering length densities for each component.
[1c03e14]4343
[6386cd8]4344Fitting parameters for a Case 0 Model
[1c03e14]4345
[58eccf6]4346=======================  ========  =============
4347Parameter name           Units     Default value
4348=======================  ========  =============
4349background               |cm^-1|   0.0
4350scale                    None      1
4351bc (=segment Length_bc)  **unit**  5
4352bd (=segment length_bd)  **unit**  5
4353Kcd (=chi_cd)            **unit**  -0.0004
4354=======================  ========  =============
[1c03e14]4355
[6386cd8]4356Fixed parameters for a Case 0 Model
[1c03e14]4357
[58eccf6]4358=======================  ========  =============
4359Parameter name           Units     Default value
4360=======================  ========  =============
4361Lc (=scatter. length_c)  **unit**  1e-12
4362Ld (=scatter. length_d)  **unit**  0
4363Nc    (=degree polym_c)  None      1000
4364Nd    (=degree polym_d)  None      1000
4365Phic (=vol. fraction_c)  None      0.25
4366Phid (=vol. fraction_d)  None      0.25
4367vc (=specific volume_c)  **unit**  100
4368vd (=specific volume_d)  **unit**  100
4369=======================  ========  =============
[1c03e14]4370
[4ed2d0a1]4371.. image:: img/image215.JPG
[1c03e14]4372
4373*Figure. 1D plot using the default values (w/500 data points).*
4374
[6386cd8]4375REFERENCE
4376
4377A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136
[1c03e14]4378
4379
4380
[4ed2d0a1]4381.. _TwoLorentzian:
[1c03e14]4382
[58eccf6]4383**2.2.23. TwoLorentzian (Model)**
[1c03e14]4384
[6386cd8]4385This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions.
[1c03e14]4386
[4ed2d0a1]4387The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4388
[6386cd8]4389*2.2.23.1. Definition*
[1c03e14]4390
[6386cd8]4391The scattering intensity *I(q)* is calculated as
[1c03e14]4392
[6386cd8]4393.. image:: img/image216.JPG 
[1c03e14]4394
[6386cd8]4395where *A* = Lorentzian scale factor #1, *C* = Lorentzian scale #2, |xi|\ :sub:`1` and |xi|\ :sub:`2` are the
4396corresponding correlation lengths, and *n* and *m* are the respective power law exponents (set *n* = *m* = 2 for
4397Ornstein-Zernicke behaviour).
[1c03e14]4398
[93b6fcc]4399For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4400
[4ed2d0a1]4401.. image:: img/image040.GIF
[1c03e14]4402
[58eccf6]4403===============================  ========  =============
4404Parameter name                   Units     Default value
4405===============================  ========  =============
4406scale_1 (=A)                     None      10
4407scale_2 (=C)                     None      1
44081ength_1 (=correlation length1)  |Ang|     100
44091ength_2 (=correlation length2)  |Ang|     10
4410exponent_1 (=n)                  None      3
4411exponent_2 (=m)                  None      2
4412background (=B)                  |cm^-1|   0.1
4413===============================  ========  =============
[1c03e14]4414
[4ed2d0a1]4415.. image:: img/image217.JPG
[1c03e14]4416
4417*Figure. 1D plot using the default values (w/500 data points).*
4418
[bf8c07b]4419REFERENCE
4420
[6386cd8]4421None.
[1c03e14]4422
4423
4424
[4ed2d0a1]4425.. _TwoPowerLaw:
[1c03e14]4426
[58eccf6]4427**2.2.24. TwoPowerLaw (Model)**
[1c03e14]4428
[6386cd8]4429This model calculates an empirical functional form for SAS data characterized by two power laws.
[1c03e14]4430
[4ed2d0a1]4431The returned value is scaled to units of |cm^-1|, absolute scale.
[1c03e14]4432
[6386cd8]4433*2.2.24.1. Definition*
4434
4435The scattering intensity *I(q)* is calculated as
[1c03e14]4436
[4ed2d0a1]4437.. image:: img/image218.JPG
[1c03e14]4438
[6386cd8]4439where *qc* is the location of the crossover from one slope to the other. The scaling *coef_A* sets the overall
4440intensity of the lower *q* power law region. The scaling of the second power law region is then automatically scaled to
4441match the first.
4442
4443**NB: Be sure to enter the power law exponents as positive values!**
[1c03e14]4444
[93b6fcc]4445For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4446
[4ed2d0a1]4447.. image:: img/image040.GIF
[1c03e14]4448
[4ed2d0a1]4449==============  ========  =============
4450Parameter name  Units     Default value
4451==============  ========  =============
[58eccf6]4452coef_A          None      1.0
4453qc              |Ang^-1|  0.04
4454power_1 (=m1)   None      4
4455power_2 (=m2)   None      4
4456background      |cm^-1|   0.0
[4ed2d0a1]4457==============  ========  =============
[1c03e14]4458
[4ed2d0a1]4459.. image:: img/image219.JPG
[1c03e14]4460
4461*Figure. 1D plot using the default values (w/500 data points).*
4462
[6386cd8]4463REFERENCE
4464
4465None.
4466
[1c03e14]4467
4468
[4ed2d0a1]4469.. _UnifiedPowerRg:
[1c03e14]4470
[58eccf6]4471**2.2.25. UnifiedPowerRg (Beaucage Model)**
[1c03e14]4472
[6386cd8]4473This model deploys the empirical multiple level unified Exponential/Power-law fit method developed by G Beaucage. Four
4474functions are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level has been added which simply
4475calculates
4476
4477*I(q)* = *scale* / *q* + *background*
4478
[4ed2d0a1]4479The returned value is scaled to units of |cm^-1|, absolute scale. 
4480
[6386cd8]4481The Beaucage method is able to reasonably approximate the scattering from many different types of particles, including
4482fractal clusters, random coils (Debye equation), ellipsoidal particles, etc. 
[1c03e14]4483
[6386cd8]4484*2.2.25.1 Definition*
[1c03e14]4485
[4ed2d0a1]4486The empirical fit function is 
[1c03e14]4487
[4ed2d0a1]4488.. image:: img/image220.JPG
[1c03e14]4489
[6386cd8]4490For each level, the four parameters *Gi*, *Rg,i*, *Bi* and *Pi* must be chosen. 
[1c03e14]4491
[6386cd8]4492For example, to approximate the scattering from random coils (Debye_ equation), set *Rg,i* as the Guinier radius,
4493*Pi* = 2, and *Bi* = 2 *Gi* / *Rg,i* 
[1c03e14]4494
[6386cd8]4495See the references for further information on choosing the parameters.
[1c03e14]4496
[93b6fcc]4497For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4498
[4ed2d0a1]4499.. image:: img/image040.GIF
[1c03e14]4500
[4ed2d0a1]4501==============  ========  =============
4502Parameter name  Units     Default value
4503==============  ========  =============
[58eccf6]4504scale           None      1.0
4505Rg2             |Ang|     21
4506power2          None      2
4507G2              |cm^-1|   3
4508B2              |cm^-1|   0.0006
4509Rg1             |Ang|     15.8
4510power1          None      4
4511G1              |cm^-1|   400
4512B1              |cm^-1|   4.5e-6                |
4513background      |cm^-1|   0.0
[4ed2d0a1]4514==============  ========  =============
[1c03e14]4515
[4ed2d0a1]4516.. image:: img/image221.JPG
[1c03e14]4517
4518*Figure. 1D plot using the default values (w/500 data points).*
4519
4520REFERENCE
4521
[6386cd8]4522G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
[1c03e14]4523
[6386cd8]4524G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
[1c03e14]4525
4526
4527
[4ed2d0a1]4528.. _LineModel:
[1c03e14]4529
[4ed2d0a1]4530**2.2.26. LineModel**
[1c03e14]4531
[6386cd8]4532This calculates the simple linear function
[1c03e14]4533
[4ed2d0a1]4534.. image:: img/image222.PNG
[1c03e14]4535
[6386cd8]4536**NB: For 2D plots,** *I(q)* = *I(qx)*\ *\ *I(qy)*, **which is a different definition to other shape independent models.**
[1c03e14]4537
[6386cd8]4538==============  ==============  =============
4539Parameter name  Units           Default value
4540==============  ==============  =============
4541A               |cm^-1|         1.0
4542B               |Ang|\ |cm^-1|  1.0
4543==============  ==============  =============
[1c03e14]4544
[6386cd8]4545REFERENCE
[1c03e14]4546
[6386cd8]4547None.
[1c03e14]4548
4549
4550
[6386cd8]4551.. _GelFitModel:
[1c03e14]4552
[6386cd8]4553**2.2.27. GelFitModel**
[1c03e14]4554
[6386cd8]4555*This model was implemented by an interested user!*
[1c03e14]4556
[6386cd8]4557Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two
4558characteristic length scales, a shorter correlation length (*a1*) to describe the rapid fluctuations in the position
4559of the polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as *a2*) needed to
4560account for the static accumulations of polymer pinned down by junction points or clusters of such points. The latter
4561is derived from a simple Guinier function.
[1c03e14]4562
[6386cd8]4563Also see the GaussLorentzGel_ Model.
[1c03e14]4564
[6386cd8]4565*2.2.27.1. Definition*
4566
4567The scattered intensity *I(q)* is calculated as
[1c03e14]4568
[6386cd8]4569.. image:: img/image233.GIF
[1c03e14]4570
[6386cd8]4571where
[1c03e14]4572
[6386cd8]4573.. image:: img/image234.GIF
[1c03e14]4574
[6386cd8]4575Note that the first term reduces to the Ornstein-Zernicke equation when *D* = 2; ie, when the Flory exponent is 0.5
4576(theta conditions). In gels with significant hydrogen bonding *D* has been reported to be ~2.6 to 2.8.
[1c03e14]4577
[6386cd8]4578============================  ========  =============
4579Parameter name                Units     Default value
4580============================  ========  =============
4581Background                    |cm^-1|   0.01
4582Guinier scale    (= *I(0)G*)  |cm^-1|   1.7
4583Lorentzian scale (= *I(0)L*)  |cm^-1|   3.5
4584Radius of gyration  (= *Rg*)  |Ang|     104
4585Fractal exponent     (= *D*)  None      2
4586Correlation length  (= *a1*)  |Ang|     16
4587============================  ========  =============
[1c03e14]4588
[6386cd8]4589.. image:: img/image235.GIF
[1c03e14]4590
[6386cd8]4591*Figure. 1D plot using the default values (w/300 data points).*
[1c03e14]4592
[6386cd8]4593REFERENCE
[1c03e14]4594
[6386cd8]4595Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841
[1c03e14]4596
[6386cd8]4597Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24, 543-548
[1c03e14]4598
4599
4600
[6386cd8]4601.. _StarPolymer:
[1c03e14]4602
[6386cd8]4603**2.2.28. Star Polymer with Gaussian Statistics**
[1c03e14]4604
[6386cd8]4605This model is also known as the Benoit Star model.
[1c03e14]4606
[6386cd8]4607*2.2.28.1. Definition*
4608
4609For a star with *f* arms:
[1c03e14]4610
[6386cd8]4611.. image:: img/star1.PNG
[1c03e14]4612
[6386cd8]4613where
[1c03e14]4614
[6386cd8]4615.. image:: img/star2.PNG
[1c03e14]4616
[6386cd8]4617and
4618
4619.. image:: img/star3.PNG
[1c03e14]4620
[6386cd8]4621is the square of the ensemble average radius-of-gyration of an arm.
[1c03e14]4622
[6386cd8]4623REFERENCE
[1c03e14]4624
[6386cd8]4625H Benoit,   J. Polymer Science.,  11, 596-599  (1953)
[1c03e14]4626
4627
4628
[6386cd8]4629.. _ReflectivityModel:
[1c03e14]4630
[6386cd8]4631**2.2.29. ReflectivityModel**
[1c03e14]4632
[6386cd8]4633*This model was contributed by an interested user!*
4634
4635This model calculates **reflectivity** using the Parrett algorithm.
4636
4637Up to nine film layers are supported between Bottom(substrate) and Medium(Superstrate) where the neutron enters the
4638first top film. Each of the layers are composed of
4639
4640[œ of the interface (from the previous layer or substrate) + flat portion + œ of the interface (to the next layer or medium)]
4641
4642Two simple functions are provided to describe the interfacial density distribution; a linear function and an error
4643function. The interfacial thickness is equivalent to (-2.5 |sigma| to +2.5 |sigma| for the error function, where
4644|sigma| = roughness).
4645
4646Also see ReflectivityIIModel_.
4647
4648.. image:: img/image231.BMP
4649
4650*Figure. Comparison (using the SLD profile below) with the NIST web calculation (circles)*
4651http://www.ncnr.nist.gov/resources/reflcalc.html
4652
4653.. image:: img/image232.GIF
4654
4655*Figure. SLD profile used for the calculation (above).*
[1c03e14]4656
4657REFERENCE
4658
[6386cd8]4659None.
[1c03e14]4660
4661
4662
[6386cd8]4663.. _ReflectivityIIModel:
[1c03e14]4664
[6386cd8]4665**2.2.30. ReflectivityIIModel**
[1c03e14]4666
[6386cd8]4667*This model was contributed by an interested user!*
[1c03e14]4668
[6386cd8]4669This **reflectivity** model is a more flexible version of ReflectivityModel_. More interfacial density
4670functions are supported, and the number of points (*npts_inter*) for each interface can be chosen.
[1c03e14]4671
[6386cd8]4672The SLD at the interface between layers, |rho|\ *inter_i*, is calculated with a function chosen by a user, where the
4673available functions are
[1c03e14]4674
[6386cd8]46751) Erf
[1c03e14]4676
[6386cd8]4677.. image:: img/image051.GIF
[1c03e14]4678
[6386cd8]46792) Power-Law
4680
4681.. image:: img/image050.GIF
4682
46833) Exp
4684
4685.. image:: img/image049.GIF
4686
4687The constant *A* in the expressions above (but the parameter *nu* in the model!) is an input.
[1c03e14]4688
4689REFERENCE
[bf8c07b]4690
[6386cd8]4691None.
[1c03e14]4692
4693
4694
46952.3 Structure-factor Functions
4696------------------------------
4697
[6386cd8]4698The information in this section originated from NIST SANS package.
[1c03e14]4699
4700.. _HardSphereStructure:
4701
4702**2.3.1. HardSphereStructure Factor**
4703
4704This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard
4705sphere (excluded volume) interactions.
4706
4707The calculation uses the Percus-Yevick closure where the interparticle potential is
4708
4709.. image:: img/image223.PNG
4710
4711where *r* is the distance from the center of the sphere of a radius *R*.
4712
4713For a 2D plot, the wave transfer is defined as
4714
4715.. image:: img/image040.GIF
4716
4717==============  ========  =============
4718Parameter name  Units     Default value
4719==============  ========  =============
4720effect_radius   |Ang|     50.0
4721volfraction     None      0.2
4722==============  ========  =============
4723
4724.. image:: img/image224.JPG
4725
4726*Figure. 1D plot using the default values (in linear scale).*
4727
4728REFERENCE
[bf8c07b]4729
[93b6fcc]4730J K Percus, J Yevick, *J. Phys. Rev.*, 110, (1958) 1
[1c03e14]4731
4732
4733
4734.. _SquareWellStructure:
4735
4736**2.3.2. SquareWellStructure Factor**
4737
4738This calculates the interparticle structure factor for a square well fluid spherical particles. The mean spherical
4739approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
4740interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing
4741this calculation to be limited in applicability to well depths |epsilon| < 1.5 kT and volume fractions |phi| < 0.08.
4742
4743Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
4744"shoulder", which may or may not be physically reasonable.
4745
4746The well width (*l*\ ) is defined as multiples of the particle diameter (2\*\ *R*\ )
4747
4748The interaction potential is:
4749
4750.. image:: img/image225.PNG
4751
4752where *r* is the distance from the center of the sphere of a radius *R*.
4753
[93b6fcc]4754For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4755
4756.. image:: img/image040.GIF
4757
4758==============  =========  =============
4759Parameter name  Units      Default value
4760==============  =========  =============
4761effect_radius   |Ang|      50.0
4762volfraction     None       0.04
4763welldepth       kT         1.5
4764wellwidth       diameters  1.2
4765==============  =========  =============
4766
4767.. image:: img/image226.JPG
4768
4769*Figure. 1D plot using the default values (in linear scale).*
4770
4771REFERENCE
[bf8c07b]4772
[93b6fcc]4773R V Sharma, K C Sharma, *Physica*, 89A (1977) 213
[1c03e14]4774
4775
4776
4777.. _HayterMSAStructure:
4778
4779**2.3.3. HayterMSAStructure Factor**
4780
4781This calculates the structure factor (the Fourier transform of the pair correlation function *g(r)*) for a system of
4782charged, spheroidal objects in a dielectric medium. When combined with an appropriate form factor (such as sphere,
4783core+shell, ellipsoid, etc), this allows for inclusion of the interparticle interference effects due to screened coulomb
4784repulsion between charged particles.
4785
4786**This routine only works for charged particles**. If the charge is set to zero the routine will self-destruct!
4787For non-charged particles use a hard sphere potential.
4788
4789The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye
4790screening length. At present there is no provision for entering the ionic strength directly nor for use of any
4791multivalent salts. The counterions are also assumed to be monovalent.
4792
[93b6fcc]4793For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4794
4795.. image:: img/image040.gif
4796
4797==============  ========  =============
4798Parameter name  Units     Default value
4799==============  ========  =============
4800effect_radius   |Ang|     20.8
4801charge          *e*       19
4802volfraction     None      0.2
4803temperature     K         318
4804salt conc       M         0
4805dielectconst    None      71.1
4806==============  ========  =============
4807
4808.. image:: img/image227.JPG
4809
4810*Figure. 1D plot using the default values (in linear scale).*
4811
4812REFERENCE
[bf8c07b]4813
[93b6fcc]4814J B Hayter and J Penfold, *Molecular Physics*, 42 (1981) 109-118
[bf8c07b]4815
[93b6fcc]4816J P Hansen and J B Hayter, *Molecular Physics*, 46 (1982) 651-656
[1c03e14]4817
4818
4819.. _StickyHSStructure:
4820
4821**2.3.4. StickyHSStructure Factor**
4822
4823This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive well. A perturbative
4824solution of the Percus-Yevick closure is used. The strength of the attractive well is described in terms of "stickiness"
4825as defined below. The returned value is a dimensionless structure factor, *S(q)*.
4826
4827The perturb (perturbation parameter), |epsilon|, should be held between 0.01 and 0.1. It is best to hold the
4828perturbation parameter fixed and let the "stickiness" vary to adjust the interaction strength. The stickiness, |tau|,
4829is defined in the equation below and is a function of both the perturbation parameter and the interaction strength.
4830|tau| and |epsilon| are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the width of the square
4831well, |bigdelta| (same units as *R*), and the depth of the well, *Uo*, in units of kT. From the definition, it is clear
4832that smaller |tau| means stronger attraction.
4833
4834.. image:: img/image228.PNG
4835
4836where the interaction potential is
4837
4838.. image:: img/image229.PNG
4839
4840The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an attractive interparticle
4841potential. This solution has been compared to Monte Carlo simulations for a square well fluid, with good agreement.
4842
4843The true particle volume fraction, |phi|, is not equal to *h*, which appears in most of the reference. The two are
4844related in equation (24) of the reference. The reference also describes the relationship between this perturbation
4845solution and the original sticky hard sphere (or adhesive sphere) model by Baxter.
4846
4847NB: The calculation can go haywire for certain combinations of the input parameters, producing unphysical solutions - in
4848this case errors are reported to the command window and the *S(q)* is set to -1 (so it will disappear on a log-log
4849plot). Use tight bounds to keep the parameters to values that you know are physical (test them) and keep nudging them
4850until the optimization does not hit the constraints.
4851
[93b6fcc]4852For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as
[1c03e14]4853
4854.. image:: img/image040.GIF
4855
4856==============  ========  =============
4857Parameter name  Units     Default value
4858==============  ========  =============
4859effect_radius   |Ang|     50
4860perturb         None      0.05
4861volfraction     None      0.1
4862stickiness      K         0.2
4863==============  ========  =============
4864
4865.. image:: img/image230.JPG
4866
4867*Figure. 1D plot using the default values (in linear scale).*
4868
4869REFERENCE
[bf8c07b]4870
[93b6fcc]4871S V G Menon, C Manohar, and K S Rao, *J. Chem. Phys.*, 95(12) (1991) 9186-9190
[1c03e14]4872
4873
4874
48752.4 Customised Functions
4876------------------------------
4877
4878
4879Customized model functions can be redefined or added to by users (See SansView tutorial for details).
4880
4881.. _testmodel:
4882
4883**2.4.1. testmodel**
4884
4885This function, as an example of a user defined function, calculates
4886
4887*I(q)* = *A* + *B* cos(2\ *q*\ ) + *C* sin(2\ *q*\ )
4888
4889
4890
4891.. _testmodel_2:
4892
4893**2.4.2. testmodel_2**
4894
4895This function, as an example of a user defined function, calculates
4896
4897*I(q)* = *scale* * sin(*f*\ )/*f*
4898
4899where
4900
4901*f* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4902
4903
4904
4905.. _sum_p1_p2:
4906
4907**2.4.3. sum_p1_p2**
4908
4909This function, as an example of a user defined function, calculates
4910
4911*I(q)* = *scale_factor* \* (CylinderModel + PolymerExclVolumeModel)
4912
4913To make your own (*p1 + p2*) model, select 'Easy Custom Sum' from the Fitting menu, or modify and compile the file
4914named 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu.
4915
4916NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4917
4918
4919
4920.. _sum_Ap1_1_Ap2:
4921
4922**2.4.4. sum_Ap1_1_Ap2**
4923
4924This function, as an example of a user defined function, calculates
4925
4926*I(q)* = (*scale_factor* \* CylinderModel + (1 - *scale_factor*\ ) \* PolymerExclVolume model)
4927
4928To make your own (*A*\ * *p1* + (1-*A*) \* *p2*) model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from
4929'Edit Custom Model' in the 'Fitting' menu.
4930
4931NB: Summing models only works only for single functional models (ie, single shell models, two-component RPA models, etc).
4932
4933
4934
4935.. _polynomial5:
4936
4937**2.4.5. polynomial5**
4938
4939This function, as an example of a user defined function, calculates
4940
4941*I(q)* = *A* + *Bq* + *Cq*\ :sup:`2` + *Dq*\ :sup:`3` + *Eq*\ :sup:`4` + *Fq*\ :sup:`5`
4942
4943This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
4944
4945
4946
4947.. _sph_bessel_jn:
4948
4949**2.4.6. sph_bessel_jn**
4950
4951This function, as an example of a user defined function, calculates
4952
4953*I(q)* = *C* \* *sph_jn(Ax+B)+D*
4954
4955where *sph_jn* is a spherical Bessel function of order *n*.
4956
4957This model can be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
Note: See TracBrowser for help on using the repository browser.