source: sasview/src/sans/models/c_extension/python_wrapper/generated/CTriaxialEllipsoidModel.cpp @ 400155b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 400155b was 400155b, checked in by gonzalezm, 9 years ago

Implementing request from ticket 261 - default number of bins in Annulus [Phi View] is now 36 and the first bin is now centered at 0 degrees

  • Property mode set to 100644
File size: 29.6 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CTriaxialEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\triaxial_ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35
36}
37
38#include "triaxial_ellipsoid.h"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CTriaxialEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    TriaxialEllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CTriaxialEllipsoidModel;
57
58
59static void
60CTriaxialEllipsoidModel_dealloc(CTriaxialEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CTriaxialEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CTriaxialEllipsoidModel *self;
75   
76    self = (CTriaxialEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CTriaxialEllipsoidModel_init(CTriaxialEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89
90        self->model = new TriaxialEllipsoidModel();
91
92        // Initialize parameter dictionary
93        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
94        PyDict_SetItemString(self->params,"axis_psi",Py_BuildValue("d",0.000000000000));
95        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",57.325000000000));
96        PyDict_SetItemString(self->params,"semi_axisA",Py_BuildValue("d",35.000000000000));
97        PyDict_SetItemString(self->params,"semi_axisB",Py_BuildValue("d",100.000000000000));
98        PyDict_SetItemString(self->params,"semi_axisC",Py_BuildValue("d",400.000000000000));
99        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",57.325000000000));
100        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000006300000));
101        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
102        PyDict_SetItemString(self->params,"sldEll",Py_BuildValue("d",0.000001000000));
103        // Initialize dispersion / averaging parameter dict
104        DispersionVisitor* visitor = new DispersionVisitor();
105        PyObject * disp_dict;
106        disp_dict = PyDict_New();
107        self->model->semi_axisA.dispersion->accept_as_source(visitor, self->model->semi_axisA.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "semi_axisA", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->semi_axisB.dispersion->accept_as_source(visitor, self->model->semi_axisB.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "semi_axisB", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->semi_axisC.dispersion->accept_as_source(visitor, self->model->semi_axisC.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "semi_axisC", disp_dict);
115        disp_dict = PyDict_New();
116        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
117        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
118        disp_dict = PyDict_New();
119        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
120        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
121        disp_dict = PyDict_New();
122        self->model->axis_psi.dispersion->accept_as_source(visitor, self->model->axis_psi.dispersion, disp_dict);
123        PyDict_SetItemString(self->dispersion, "axis_psi", disp_dict);
124
125
126         
127        // Create empty log
128        self->log = PyDict_New();
129       
130       
131
132    }
133    return 0;
134}
135
136static char name_params[] = "params";
137static char def_params[] = "Parameters";
138static char name_dispersion[] = "dispersion";
139static char def_dispersion[] = "Dispersion parameters";
140static char name_log[] = "log";
141static char def_log[] = "Log";
142
143static PyMemberDef CTriaxialEllipsoidModel_members[] = {
144    {name_params, T_OBJECT, offsetof(CTriaxialEllipsoidModel, params), 0, def_params},
145        {name_dispersion, T_OBJECT, offsetof(CTriaxialEllipsoidModel, dispersion), 0, def_dispersion},     
146    {name_log, T_OBJECT, offsetof(CTriaxialEllipsoidModel, log), 0, def_log},
147    {NULL}  /* Sentinel */
148};
149
150/** Read double from PyObject
151    @param p PyObject
152    @return double
153*/
154double CTriaxialEllipsoidModel_readDouble(PyObject *p) {
155    if (PyFloat_Check(p)==1) {
156        return (double)(((PyFloatObject *)(p))->ob_fval);
157    } else if (PyInt_Check(p)==1) {
158        return (double)(((PyIntObject *)(p))->ob_ival);
159    } else if (PyLong_Check(p)==1) {
160        return (double)PyLong_AsLong(p);
161    } else {
162        return 0.0;
163    }
164}
165/**
166 * Function to call to evaluate model
167 * @param args: input numpy array q[]
168 * @return: numpy array object
169 */
170 
171static PyObject *evaluateOneDim(TriaxialEllipsoidModel* model, PyArrayObject *q){
172    PyArrayObject *result;
173   
174    // Check validity of array q , q must be of dimension 1, an array of double
175    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
176    {
177        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
178        //PyErr_SetString(PyExc_ValueError , message);
179        return NULL;
180    }
181    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
182        if (result == NULL) {
183        const char * message= "Could not create result ";
184        PyErr_SetString(PyExc_RuntimeError , message);
185                return NULL;
186        }
187#pragma omp parallel for
188         for (int i = 0; i < q->dimensions[0]; i++){
189      double q_value  = *(double *)(q->data + i*q->strides[0]);
190      double *result_value = (double *)(result->data + i*result->strides[0]);
191      *result_value =(*model)(q_value);
192        }
193    return PyArray_Return(result); 
194 }
195
196 /**
197 * Function to call to evaluate model
198 * @param args: input numpy array  [x[],y[]]
199 * @return: numpy array object
200 */
201 static PyObject * evaluateTwoDimXY( TriaxialEllipsoidModel* model, 
202                              PyArrayObject *x, PyArrayObject *y)
203 {
204    PyArrayObject *result;
205    int x_len, y_len, dims[1];
206    //check validity of input vectors
207    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
208        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
209        || y->dimensions[0] != x->dimensions[0]){
210        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
211        PyErr_SetString(PyExc_ValueError , message); 
212        return NULL;
213    }
214   
215        if (PyArray_Check(x) && PyArray_Check(y)) {
216               
217            x_len = dims[0]= x->dimensions[0];
218        y_len = dims[0]= y->dimensions[0];
219           
220            // Make a new double matrix of same dims
221        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
222        if (result == NULL){
223            const char * message= "Could not create result ";
224        PyErr_SetString(PyExc_RuntimeError , message);
225            return NULL;
226            }
227       
228        /* Do the calculation. */
229#pragma omp parallel for
230        for (int i=0; i< x_len; i++) {
231            double x_value = *(double *)(x->data + i*x->strides[0]);
232                    double y_value = *(double *)(y->data + i*y->strides[0]);
233                        double *result_value = (double *)(result->data +
234                              i*result->strides[0]);
235                        *result_value = (*model)(x_value, y_value);
236        }           
237        return PyArray_Return(result); 
238       
239        }else{
240                    PyErr_SetString(CTriaxialEllipsoidModelError, 
241                   "CTriaxialEllipsoidModel.evaluateTwoDimXY couldn't run.");
242                return NULL;
243                }       
244}
245/**
246 *  evalDistribution function evaluate a model function with input vector
247 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
248 *
249 */ 
250static PyObject * evalDistribution(CTriaxialEllipsoidModel *self, PyObject *args){
251        PyObject *qx, *qy;
252        PyArrayObject * pars;
253        int npars ,mpars;
254       
255        // Get parameters
256       
257            // Reader parameter dictionary
258    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
259    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
260    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
261    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
262    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
263    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
264    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
265    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
266    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
267    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
268    // Read in dispersion parameters
269    PyObject* disp_dict;
270    DispersionVisitor* visitor = new DispersionVisitor();
271    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
272    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
273    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
274    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
275    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
276    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
277    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
278    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
279    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
280    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
281    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
282    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
283
284       
285        // Get input and determine whether we have to supply a 1D or 2D return value.
286        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
287            PyErr_SetString(CTriaxialEllipsoidModelError, 
288                "CTriaxialEllipsoidModel.evalDistribution expects a q value.");
289                return NULL;
290        }
291    // Check params
292       
293    if(PyArray_Check(pars)==1) {
294               
295            // Length of list should 1 or 2
296            npars = pars->nd; 
297            if(npars==1) {
298                // input is a numpy array
299                if (PyArray_Check(pars)) {
300                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
301                    }
302                }else{
303                    PyErr_SetString(CTriaxialEllipsoidModelError, 
304                   "CTriaxialEllipsoidModel.evalDistribution expect numpy array of one dimension.");
305                return NULL;
306                }
307    }else if( PyList_Check(pars)==1) {
308        // Length of list should be 2 for I(qx,qy)
309            mpars = PyList_GET_SIZE(pars); 
310            if(mpars!=2) {
311                PyErr_SetString(CTriaxialEllipsoidModelError, 
312                        "CTriaxialEllipsoidModel.evalDistribution expects a list of dimension 2.");
313                return NULL;
314            }
315             qx = PyList_GET_ITEM(pars,0);
316             qy = PyList_GET_ITEM(pars,1);
317             if (PyArray_Check(qx) && PyArray_Check(qy)) {
318                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
319                           (PyArrayObject*)qy);
320                 }else{
321                    PyErr_SetString(CTriaxialEllipsoidModelError, 
322                   "CTriaxialEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
323                return NULL;
324             }
325        }
326        PyErr_SetString(CTriaxialEllipsoidModelError, 
327                   "CTriaxialEllipsoidModel.evalDistribution couln't be run.");
328        return NULL;
329       
330}
331
332/**
333 * Function to call to evaluate model
334 * @param args: input q or [q,phi]
335 * @return: function value
336 */
337static PyObject * run(CTriaxialEllipsoidModel *self, PyObject *args) {
338        double q_value, phi_value;
339        PyObject* pars;
340        int npars;
341       
342        // Get parameters
343       
344            // Reader parameter dictionary
345    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
346    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
347    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
348    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
349    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
350    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
351    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
352    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
353    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
354    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
355    // Read in dispersion parameters
356    PyObject* disp_dict;
357    DispersionVisitor* visitor = new DispersionVisitor();
358    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
359    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
360    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
361    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
362    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
363    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
364    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
365    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
366    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
367    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
368    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
369    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
370
371       
372        // Get input and determine whether we have to supply a 1D or 2D return value.
373        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
374            PyErr_SetString(CTriaxialEllipsoidModelError, 
375                "CTriaxialEllipsoidModel.run expects a q value.");
376                return NULL;
377        }
378         
379        // Check params
380        if( PyList_Check(pars)==1) {
381               
382                // Length of list should be 2 for I(q,phi)
383            npars = PyList_GET_SIZE(pars); 
384            if(npars!=2) {
385                PyErr_SetString(CTriaxialEllipsoidModelError, 
386                        "CTriaxialEllipsoidModel.run expects a double or a list of dimension 2.");
387                return NULL;
388            }
389            // We have a vector q, get the q and phi values at which
390            // to evaluate I(q,phi)
391            q_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
392            phi_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
393            // Skip zero
394            if (q_value==0) {
395                return Py_BuildValue("d",0.0);
396            }
397                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
398
399        } else {
400
401                // We have a scalar q, we will evaluate I(q)
402                q_value = CTriaxialEllipsoidModel_readDouble(pars);             
403               
404                return Py_BuildValue("d",(*(self->model))(q_value));
405        }       
406}
407/**
408 * Function to call to calculate_ER
409 * @return: effective radius value
410 */
411static PyObject * calculate_ER(CTriaxialEllipsoidModel *self) {
412
413        // Get parameters
414       
415            // Reader parameter dictionary
416    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
417    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
418    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
419    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
420    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
421    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
422    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
423    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
424    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
425    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
426    // Read in dispersion parameters
427    PyObject* disp_dict;
428    DispersionVisitor* visitor = new DispersionVisitor();
429    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
430    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
431    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
432    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
433    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
434    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
435    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
436    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
437    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
438    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
439    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
440    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
441
442               
443        return Py_BuildValue("d",(*(self->model)).calculate_ER());
444
445}
446/**
447 * Function to call to cal the ratio shell volume/ total volume
448 * @return: the ratio shell volume/ total volume
449 */
450static PyObject * calculate_VR(CTriaxialEllipsoidModel *self) {
451
452        // Get parameters
453       
454            // Reader parameter dictionary
455    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
456    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
457    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
458    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
459    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
460    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
461    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
462    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
463    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
464    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
465    // Read in dispersion parameters
466    PyObject* disp_dict;
467    DispersionVisitor* visitor = new DispersionVisitor();
468    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
469    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
470    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
471    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
472    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
473    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
474    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
475    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
476    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
477    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
478    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
479    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
480
481               
482        return Py_BuildValue("d",(*(self->model)).calculate_VR());
483
484}
485/**
486 * Function to call to evaluate model in cartesian coordinates
487 * @param args: input q or [qx, qy]]
488 * @return: function value
489 */
490static PyObject * runXY(CTriaxialEllipsoidModel *self, PyObject *args) {
491        double qx_value, qy_value;
492        PyObject* pars;
493        int npars;
494       
495        // Get parameters
496       
497            // Reader parameter dictionary
498    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
499    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
500    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
501    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
502    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
503    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
504    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
505    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
506    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
507    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
508    // Read in dispersion parameters
509    PyObject* disp_dict;
510    DispersionVisitor* visitor = new DispersionVisitor();
511    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
512    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
513    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
514    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
515    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
516    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
517    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
518    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
519    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
520    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
521    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
522    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
523
524       
525        // Get input and determine whether we have to supply a 1D or 2D return value.
526        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
527            PyErr_SetString(CTriaxialEllipsoidModelError, 
528                "CTriaxialEllipsoidModel.run expects a q value.");
529                return NULL;
530        }
531         
532        // Check params
533        if( PyList_Check(pars)==1) {
534               
535                // Length of list should be 2 for I(qx, qy))
536            npars = PyList_GET_SIZE(pars); 
537            if(npars!=2) {
538                PyErr_SetString(CTriaxialEllipsoidModelError, 
539                        "CTriaxialEllipsoidModel.run expects a double or a list of dimension 2.");
540                return NULL;
541            }
542            // We have a vector q, get the qx and qy values at which
543            // to evaluate I(qx,qy)
544            qx_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
545            qy_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
546            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
547
548        } else {
549
550                // We have a scalar q, we will evaluate I(q)
551                qx_value = CTriaxialEllipsoidModel_readDouble(pars);           
552               
553                return Py_BuildValue("d",(*(self->model))(qx_value));
554        }       
555}
556
557static PyObject * reset(CTriaxialEllipsoidModel *self, PyObject *args) {
558   
559
560    return Py_BuildValue("d",0.0);
561}
562
563static PyObject * set_dispersion(CTriaxialEllipsoidModel *self, PyObject *args) {
564        PyObject * disp;
565        const char * par_name;
566
567        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
568            PyErr_SetString(CTriaxialEllipsoidModelError,
569                "CTriaxialEllipsoidModel.set_dispersion expects a DispersionModel object.");
570                return NULL;
571        }
572        void *temp = PyCObject_AsVoidPtr(disp);
573        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
574
575
576        // Ugliness necessary to go from python to C
577            // TODO: refactor this
578    if (!strcmp(par_name, "semi_axisA")) {
579        self->model->semi_axisA.dispersion = dispersion;
580    } else    if (!strcmp(par_name, "semi_axisB")) {
581        self->model->semi_axisB.dispersion = dispersion;
582    } else    if (!strcmp(par_name, "semi_axisC")) {
583        self->model->semi_axisC.dispersion = dispersion;
584    } else    if (!strcmp(par_name, "axis_theta")) {
585        self->model->axis_theta.dispersion = dispersion;
586    } else    if (!strcmp(par_name, "axis_phi")) {
587        self->model->axis_phi.dispersion = dispersion;
588    } else    if (!strcmp(par_name, "axis_psi")) {
589        self->model->axis_psi.dispersion = dispersion;
590    } else {
591            PyErr_SetString(CTriaxialEllipsoidModelError,
592                "CTriaxialEllipsoidModel.set_dispersion expects a valid parameter name.");
593                return NULL;
594        }
595
596        DispersionVisitor* visitor = new DispersionVisitor();
597        PyObject * disp_dict = PyDict_New();
598        dispersion->accept_as_source(visitor, dispersion, disp_dict);
599        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
600    return Py_BuildValue("i",1);
601}
602
603
604static PyMethodDef CTriaxialEllipsoidModel_methods[] = {
605    {"run",      (PyCFunction)run     , METH_VARARGS,
606      "Evaluate the model at a given Q or Q, phi"},
607    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
608      "Evaluate the model at a given Q or Qx, Qy"},
609    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
610      "Evaluate the model at a given Q or Q, phi"},
611    {"calculate_VR",      (PyCFunction)calculate_VR     , METH_VARARGS,
612      "Evaluate VR"},   
613    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
614      "Evaluate the model at a given Q or Qx, Qy vector "},
615    {"reset",    (PyCFunction)reset   , METH_VARARGS,
616      "Reset pair correlation"},
617    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
618      "Set the dispersion model for a given parameter"},
619   {NULL}
620};
621
622static PyTypeObject CTriaxialEllipsoidModelType = {
623    PyObject_HEAD_INIT(NULL)
624    0,                         /*ob_size*/
625    "CTriaxialEllipsoidModel",             /*tp_name*/
626    sizeof(CTriaxialEllipsoidModel),             /*tp_basicsize*/
627    0,                         /*tp_itemsize*/
628    (destructor)CTriaxialEllipsoidModel_dealloc, /*tp_dealloc*/
629    0,                         /*tp_print*/
630    0,                         /*tp_getattr*/
631    0,                         /*tp_setattr*/
632    0,                         /*tp_compare*/
633    0,                         /*tp_repr*/
634    0,                         /*tp_as_number*/
635    0,                         /*tp_as_sequence*/
636    0,                         /*tp_as_mapping*/
637    0,                         /*tp_hash */
638    0,                         /*tp_call*/
639    0,                         /*tp_str*/
640    0,                         /*tp_getattro*/
641    0,                         /*tp_setattro*/
642    0,                         /*tp_as_buffer*/
643    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
644    "CTriaxialEllipsoidModel objects",           /* tp_doc */
645    0,                         /* tp_traverse */
646    0,                         /* tp_clear */
647    0,                         /* tp_richcompare */
648    0,                         /* tp_weaklistoffset */
649    0,                         /* tp_iter */
650    0,                         /* tp_iternext */
651    CTriaxialEllipsoidModel_methods,             /* tp_methods */
652    CTriaxialEllipsoidModel_members,             /* tp_members */
653    0,                         /* tp_getset */
654    0,                         /* tp_base */
655    0,                         /* tp_dict */
656    0,                         /* tp_descr_get */
657    0,                         /* tp_descr_set */
658    0,                         /* tp_dictoffset */
659    (initproc)CTriaxialEllipsoidModel_init,      /* tp_init */
660    0,                         /* tp_alloc */
661    CTriaxialEllipsoidModel_new,                 /* tp_new */
662};
663
664
665//static PyMethodDef module_methods[] = {
666//    {NULL}
667//};
668
669/**
670 * Function used to add the model class to a module
671 * @param module: module to add the class to
672 */ 
673void addCTriaxialEllipsoidModel(PyObject *module) {
674        PyObject *d;
675       
676    if (PyType_Ready(&CTriaxialEllipsoidModelType) < 0)
677        return;
678
679    Py_INCREF(&CTriaxialEllipsoidModelType);
680    PyModule_AddObject(module, "CTriaxialEllipsoidModel", (PyObject *)&CTriaxialEllipsoidModelType);
681   
682    d = PyModule_GetDict(module);
683    static char error_name[] = "CTriaxialEllipsoidModel.error";
684    CTriaxialEllipsoidModelError = PyErr_NewException(error_name, NULL, NULL);
685    PyDict_SetItemString(d, "CTriaxialEllipsoidModelError", CTriaxialEllipsoidModelError);
686}
687
Note: See TracBrowser for help on using the repository browser.