source: sasview/src/sans/models/c_extension/python_wrapper/generated/CRectangularHollowPrismModel.cpp @ 400155b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 400155b was 400155b, checked in by gonzalezm, 9 years ago

Implementing request from ticket 261 - default number of bins in Annulus [Phi View] is now 36 and the first bin is now centered at 0 degrees

  • Property mode set to 100644
File size: 26.4 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CRectangularHollowPrismModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\RectangularHollowPrism.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35
36}
37
38#include "RectangularHollowPrism.h"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CRectangularHollowPrismModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    RectangularHollowPrismModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CRectangularHollowPrismModel;
57
58
59static void
60CRectangularHollowPrismModel_dealloc(CRectangularHollowPrismModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CRectangularHollowPrismModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CRectangularHollowPrismModel *self;
75   
76    self = (CRectangularHollowPrismModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CRectangularHollowPrismModel_init(CRectangularHollowPrismModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89
90        self->model = new RectangularHollowPrismModel();
91
92        // Initialize parameter dictionary
93        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
94        PyDict_SetItemString(self->params,"sldPipe",Py_BuildValue("d",0.000006300000));
95        PyDict_SetItemString(self->params,"thickness",Py_BuildValue("d",1.000000000000));
96        PyDict_SetItemString(self->params,"b2a_ratio",Py_BuildValue("d",1.000000000000));
97        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000001000000));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"c2a_ratio",Py_BuildValue("d",1.000000000000));
100        PyDict_SetItemString(self->params,"short_side",Py_BuildValue("d",35.000000000000));
101        // Initialize dispersion / averaging parameter dict
102        DispersionVisitor* visitor = new DispersionVisitor();
103        PyObject * disp_dict;
104        disp_dict = PyDict_New();
105        self->model->short_side.dispersion->accept_as_source(visitor, self->model->short_side.dispersion, disp_dict);
106        PyDict_SetItemString(self->dispersion, "short_side", disp_dict);
107        disp_dict = PyDict_New();
108        self->model->b2a_ratio.dispersion->accept_as_source(visitor, self->model->b2a_ratio.dispersion, disp_dict);
109        PyDict_SetItemString(self->dispersion, "b2a_ratio", disp_dict);
110        disp_dict = PyDict_New();
111        self->model->c2a_ratio.dispersion->accept_as_source(visitor, self->model->c2a_ratio.dispersion, disp_dict);
112        PyDict_SetItemString(self->dispersion, "c2a_ratio", disp_dict);
113        disp_dict = PyDict_New();
114        self->model->thickness.dispersion->accept_as_source(visitor, self->model->thickness.dispersion, disp_dict);
115        PyDict_SetItemString(self->dispersion, "thickness", disp_dict);
116
117
118         
119        // Create empty log
120        self->log = PyDict_New();
121       
122       
123
124    }
125    return 0;
126}
127
128static char name_params[] = "params";
129static char def_params[] = "Parameters";
130static char name_dispersion[] = "dispersion";
131static char def_dispersion[] = "Dispersion parameters";
132static char name_log[] = "log";
133static char def_log[] = "Log";
134
135static PyMemberDef CRectangularHollowPrismModel_members[] = {
136    {name_params, T_OBJECT, offsetof(CRectangularHollowPrismModel, params), 0, def_params},
137        {name_dispersion, T_OBJECT, offsetof(CRectangularHollowPrismModel, dispersion), 0, def_dispersion},     
138    {name_log, T_OBJECT, offsetof(CRectangularHollowPrismModel, log), 0, def_log},
139    {NULL}  /* Sentinel */
140};
141
142/** Read double from PyObject
143    @param p PyObject
144    @return double
145*/
146double CRectangularHollowPrismModel_readDouble(PyObject *p) {
147    if (PyFloat_Check(p)==1) {
148        return (double)(((PyFloatObject *)(p))->ob_fval);
149    } else if (PyInt_Check(p)==1) {
150        return (double)(((PyIntObject *)(p))->ob_ival);
151    } else if (PyLong_Check(p)==1) {
152        return (double)PyLong_AsLong(p);
153    } else {
154        return 0.0;
155    }
156}
157/**
158 * Function to call to evaluate model
159 * @param args: input numpy array q[]
160 * @return: numpy array object
161 */
162 
163static PyObject *evaluateOneDim(RectangularHollowPrismModel* model, PyArrayObject *q){
164    PyArrayObject *result;
165   
166    // Check validity of array q , q must be of dimension 1, an array of double
167    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
168    {
169        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
170        //PyErr_SetString(PyExc_ValueError , message);
171        return NULL;
172    }
173    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
174        if (result == NULL) {
175        const char * message= "Could not create result ";
176        PyErr_SetString(PyExc_RuntimeError , message);
177                return NULL;
178        }
179#pragma omp parallel for
180         for (int i = 0; i < q->dimensions[0]; i++){
181      double q_value  = *(double *)(q->data + i*q->strides[0]);
182      double *result_value = (double *)(result->data + i*result->strides[0]);
183      *result_value =(*model)(q_value);
184        }
185    return PyArray_Return(result); 
186 }
187
188 /**
189 * Function to call to evaluate model
190 * @param args: input numpy array  [x[],y[]]
191 * @return: numpy array object
192 */
193 static PyObject * evaluateTwoDimXY( RectangularHollowPrismModel* model, 
194                              PyArrayObject *x, PyArrayObject *y)
195 {
196    PyArrayObject *result;
197    int x_len, y_len, dims[1];
198    //check validity of input vectors
199    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
200        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
201        || y->dimensions[0] != x->dimensions[0]){
202        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
203        PyErr_SetString(PyExc_ValueError , message); 
204        return NULL;
205    }
206   
207        if (PyArray_Check(x) && PyArray_Check(y)) {
208               
209            x_len = dims[0]= x->dimensions[0];
210        y_len = dims[0]= y->dimensions[0];
211           
212            // Make a new double matrix of same dims
213        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
214        if (result == NULL){
215            const char * message= "Could not create result ";
216        PyErr_SetString(PyExc_RuntimeError , message);
217            return NULL;
218            }
219       
220        /* Do the calculation. */
221#pragma omp parallel for
222        for (int i=0; i< x_len; i++) {
223            double x_value = *(double *)(x->data + i*x->strides[0]);
224                    double y_value = *(double *)(y->data + i*y->strides[0]);
225                        double *result_value = (double *)(result->data +
226                              i*result->strides[0]);
227                        *result_value = (*model)(x_value, y_value);
228        }           
229        return PyArray_Return(result); 
230       
231        }else{
232                    PyErr_SetString(CRectangularHollowPrismModelError, 
233                   "CRectangularHollowPrismModel.evaluateTwoDimXY couldn't run.");
234                return NULL;
235                }       
236}
237/**
238 *  evalDistribution function evaluate a model function with input vector
239 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
240 *
241 */ 
242static PyObject * evalDistribution(CRectangularHollowPrismModel *self, PyObject *args){
243        PyObject *qx, *qy;
244        PyArrayObject * pars;
245        int npars ,mpars;
246       
247        // Get parameters
248       
249            // Reader parameter dictionary
250    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
251    self->model->sldPipe = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldPipe") );
252    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
253    self->model->b2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "b2a_ratio") );
254    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
255    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
256    self->model->c2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "c2a_ratio") );
257    self->model->short_side = PyFloat_AsDouble( PyDict_GetItemString(self->params, "short_side") );
258    // Read in dispersion parameters
259    PyObject* disp_dict;
260    DispersionVisitor* visitor = new DispersionVisitor();
261    disp_dict = PyDict_GetItemString(self->dispersion, "short_side");
262    self->model->short_side.dispersion->accept_as_destination(visitor, self->model->short_side.dispersion, disp_dict);
263    disp_dict = PyDict_GetItemString(self->dispersion, "b2a_ratio");
264    self->model->b2a_ratio.dispersion->accept_as_destination(visitor, self->model->b2a_ratio.dispersion, disp_dict);
265    disp_dict = PyDict_GetItemString(self->dispersion, "c2a_ratio");
266    self->model->c2a_ratio.dispersion->accept_as_destination(visitor, self->model->c2a_ratio.dispersion, disp_dict);
267    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
268    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
269
270       
271        // Get input and determine whether we have to supply a 1D or 2D return value.
272        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
273            PyErr_SetString(CRectangularHollowPrismModelError, 
274                "CRectangularHollowPrismModel.evalDistribution expects a q value.");
275                return NULL;
276        }
277    // Check params
278       
279    if(PyArray_Check(pars)==1) {
280               
281            // Length of list should 1 or 2
282            npars = pars->nd; 
283            if(npars==1) {
284                // input is a numpy array
285                if (PyArray_Check(pars)) {
286                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
287                    }
288                }else{
289                    PyErr_SetString(CRectangularHollowPrismModelError, 
290                   "CRectangularHollowPrismModel.evalDistribution expect numpy array of one dimension.");
291                return NULL;
292                }
293    }else if( PyList_Check(pars)==1) {
294        // Length of list should be 2 for I(qx,qy)
295            mpars = PyList_GET_SIZE(pars); 
296            if(mpars!=2) {
297                PyErr_SetString(CRectangularHollowPrismModelError, 
298                        "CRectangularHollowPrismModel.evalDistribution expects a list of dimension 2.");
299                return NULL;
300            }
301             qx = PyList_GET_ITEM(pars,0);
302             qy = PyList_GET_ITEM(pars,1);
303             if (PyArray_Check(qx) && PyArray_Check(qy)) {
304                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
305                           (PyArrayObject*)qy);
306                 }else{
307                    PyErr_SetString(CRectangularHollowPrismModelError, 
308                   "CRectangularHollowPrismModel.evalDistribution expect 2 numpy arrays in list.");
309                return NULL;
310             }
311        }
312        PyErr_SetString(CRectangularHollowPrismModelError, 
313                   "CRectangularHollowPrismModel.evalDistribution couln't be run.");
314        return NULL;
315       
316}
317
318/**
319 * Function to call to evaluate model
320 * @param args: input q or [q,phi]
321 * @return: function value
322 */
323static PyObject * run(CRectangularHollowPrismModel *self, PyObject *args) {
324        double q_value, phi_value;
325        PyObject* pars;
326        int npars;
327       
328        // Get parameters
329       
330            // Reader parameter dictionary
331    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
332    self->model->sldPipe = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldPipe") );
333    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
334    self->model->b2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "b2a_ratio") );
335    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
336    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
337    self->model->c2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "c2a_ratio") );
338    self->model->short_side = PyFloat_AsDouble( PyDict_GetItemString(self->params, "short_side") );
339    // Read in dispersion parameters
340    PyObject* disp_dict;
341    DispersionVisitor* visitor = new DispersionVisitor();
342    disp_dict = PyDict_GetItemString(self->dispersion, "short_side");
343    self->model->short_side.dispersion->accept_as_destination(visitor, self->model->short_side.dispersion, disp_dict);
344    disp_dict = PyDict_GetItemString(self->dispersion, "b2a_ratio");
345    self->model->b2a_ratio.dispersion->accept_as_destination(visitor, self->model->b2a_ratio.dispersion, disp_dict);
346    disp_dict = PyDict_GetItemString(self->dispersion, "c2a_ratio");
347    self->model->c2a_ratio.dispersion->accept_as_destination(visitor, self->model->c2a_ratio.dispersion, disp_dict);
348    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
349    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
350
351       
352        // Get input and determine whether we have to supply a 1D or 2D return value.
353        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
354            PyErr_SetString(CRectangularHollowPrismModelError, 
355                "CRectangularHollowPrismModel.run expects a q value.");
356                return NULL;
357        }
358         
359        // Check params
360        if( PyList_Check(pars)==1) {
361               
362                // Length of list should be 2 for I(q,phi)
363            npars = PyList_GET_SIZE(pars); 
364            if(npars!=2) {
365                PyErr_SetString(CRectangularHollowPrismModelError, 
366                        "CRectangularHollowPrismModel.run expects a double or a list of dimension 2.");
367                return NULL;
368            }
369            // We have a vector q, get the q and phi values at which
370            // to evaluate I(q,phi)
371            q_value = CRectangularHollowPrismModel_readDouble(PyList_GET_ITEM(pars,0));
372            phi_value = CRectangularHollowPrismModel_readDouble(PyList_GET_ITEM(pars,1));
373            // Skip zero
374            if (q_value==0) {
375                return Py_BuildValue("d",0.0);
376            }
377                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
378
379        } else {
380
381                // We have a scalar q, we will evaluate I(q)
382                q_value = CRectangularHollowPrismModel_readDouble(pars);               
383               
384                return Py_BuildValue("d",(*(self->model))(q_value));
385        }       
386}
387/**
388 * Function to call to calculate_ER
389 * @return: effective radius value
390 */
391static PyObject * calculate_ER(CRectangularHollowPrismModel *self) {
392
393        // Get parameters
394       
395            // Reader parameter dictionary
396    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
397    self->model->sldPipe = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldPipe") );
398    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
399    self->model->b2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "b2a_ratio") );
400    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
401    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
402    self->model->c2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "c2a_ratio") );
403    self->model->short_side = PyFloat_AsDouble( PyDict_GetItemString(self->params, "short_side") );
404    // Read in dispersion parameters
405    PyObject* disp_dict;
406    DispersionVisitor* visitor = new DispersionVisitor();
407    disp_dict = PyDict_GetItemString(self->dispersion, "short_side");
408    self->model->short_side.dispersion->accept_as_destination(visitor, self->model->short_side.dispersion, disp_dict);
409    disp_dict = PyDict_GetItemString(self->dispersion, "b2a_ratio");
410    self->model->b2a_ratio.dispersion->accept_as_destination(visitor, self->model->b2a_ratio.dispersion, disp_dict);
411    disp_dict = PyDict_GetItemString(self->dispersion, "c2a_ratio");
412    self->model->c2a_ratio.dispersion->accept_as_destination(visitor, self->model->c2a_ratio.dispersion, disp_dict);
413    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
414    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
415
416               
417        return Py_BuildValue("d",(*(self->model)).calculate_ER());
418
419}
420/**
421 * Function to call to cal the ratio shell volume/ total volume
422 * @return: the ratio shell volume/ total volume
423 */
424static PyObject * calculate_VR(CRectangularHollowPrismModel *self) {
425
426        // Get parameters
427       
428            // Reader parameter dictionary
429    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
430    self->model->sldPipe = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldPipe") );
431    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
432    self->model->b2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "b2a_ratio") );
433    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
434    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
435    self->model->c2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "c2a_ratio") );
436    self->model->short_side = PyFloat_AsDouble( PyDict_GetItemString(self->params, "short_side") );
437    // Read in dispersion parameters
438    PyObject* disp_dict;
439    DispersionVisitor* visitor = new DispersionVisitor();
440    disp_dict = PyDict_GetItemString(self->dispersion, "short_side");
441    self->model->short_side.dispersion->accept_as_destination(visitor, self->model->short_side.dispersion, disp_dict);
442    disp_dict = PyDict_GetItemString(self->dispersion, "b2a_ratio");
443    self->model->b2a_ratio.dispersion->accept_as_destination(visitor, self->model->b2a_ratio.dispersion, disp_dict);
444    disp_dict = PyDict_GetItemString(self->dispersion, "c2a_ratio");
445    self->model->c2a_ratio.dispersion->accept_as_destination(visitor, self->model->c2a_ratio.dispersion, disp_dict);
446    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
447    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
448
449               
450        return Py_BuildValue("d",(*(self->model)).calculate_VR());
451
452}
453/**
454 * Function to call to evaluate model in cartesian coordinates
455 * @param args: input q or [qx, qy]]
456 * @return: function value
457 */
458static PyObject * runXY(CRectangularHollowPrismModel *self, PyObject *args) {
459        double qx_value, qy_value;
460        PyObject* pars;
461        int npars;
462       
463        // Get parameters
464       
465            // Reader parameter dictionary
466    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
467    self->model->sldPipe = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldPipe") );
468    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
469    self->model->b2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "b2a_ratio") );
470    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
471    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
472    self->model->c2a_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "c2a_ratio") );
473    self->model->short_side = PyFloat_AsDouble( PyDict_GetItemString(self->params, "short_side") );
474    // Read in dispersion parameters
475    PyObject* disp_dict;
476    DispersionVisitor* visitor = new DispersionVisitor();
477    disp_dict = PyDict_GetItemString(self->dispersion, "short_side");
478    self->model->short_side.dispersion->accept_as_destination(visitor, self->model->short_side.dispersion, disp_dict);
479    disp_dict = PyDict_GetItemString(self->dispersion, "b2a_ratio");
480    self->model->b2a_ratio.dispersion->accept_as_destination(visitor, self->model->b2a_ratio.dispersion, disp_dict);
481    disp_dict = PyDict_GetItemString(self->dispersion, "c2a_ratio");
482    self->model->c2a_ratio.dispersion->accept_as_destination(visitor, self->model->c2a_ratio.dispersion, disp_dict);
483    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
484    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
485
486       
487        // Get input and determine whether we have to supply a 1D or 2D return value.
488        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
489            PyErr_SetString(CRectangularHollowPrismModelError, 
490                "CRectangularHollowPrismModel.run expects a q value.");
491                return NULL;
492        }
493         
494        // Check params
495        if( PyList_Check(pars)==1) {
496               
497                // Length of list should be 2 for I(qx, qy))
498            npars = PyList_GET_SIZE(pars); 
499            if(npars!=2) {
500                PyErr_SetString(CRectangularHollowPrismModelError, 
501                        "CRectangularHollowPrismModel.run expects a double or a list of dimension 2.");
502                return NULL;
503            }
504            // We have a vector q, get the qx and qy values at which
505            // to evaluate I(qx,qy)
506            qx_value = CRectangularHollowPrismModel_readDouble(PyList_GET_ITEM(pars,0));
507            qy_value = CRectangularHollowPrismModel_readDouble(PyList_GET_ITEM(pars,1));
508            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
509
510        } else {
511
512                // We have a scalar q, we will evaluate I(q)
513                qx_value = CRectangularHollowPrismModel_readDouble(pars);               
514               
515                return Py_BuildValue("d",(*(self->model))(qx_value));
516        }       
517}
518
519static PyObject * reset(CRectangularHollowPrismModel *self, PyObject *args) {
520   
521
522    return Py_BuildValue("d",0.0);
523}
524
525static PyObject * set_dispersion(CRectangularHollowPrismModel *self, PyObject *args) {
526        PyObject * disp;
527        const char * par_name;
528
529        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
530            PyErr_SetString(CRectangularHollowPrismModelError,
531                "CRectangularHollowPrismModel.set_dispersion expects a DispersionModel object.");
532                return NULL;
533        }
534        void *temp = PyCObject_AsVoidPtr(disp);
535        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
536
537
538        // Ugliness necessary to go from python to C
539            // TODO: refactor this
540    if (!strcmp(par_name, "short_side")) {
541        self->model->short_side.dispersion = dispersion;
542    } else    if (!strcmp(par_name, "b2a_ratio")) {
543        self->model->b2a_ratio.dispersion = dispersion;
544    } else    if (!strcmp(par_name, "c2a_ratio")) {
545        self->model->c2a_ratio.dispersion = dispersion;
546    } else    if (!strcmp(par_name, "thickness")) {
547        self->model->thickness.dispersion = dispersion;
548    } else {
549            PyErr_SetString(CRectangularHollowPrismModelError,
550                "CRectangularHollowPrismModel.set_dispersion expects a valid parameter name.");
551                return NULL;
552        }
553
554        DispersionVisitor* visitor = new DispersionVisitor();
555        PyObject * disp_dict = PyDict_New();
556        dispersion->accept_as_source(visitor, dispersion, disp_dict);
557        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
558    return Py_BuildValue("i",1);
559}
560
561
562static PyMethodDef CRectangularHollowPrismModel_methods[] = {
563    {"run",      (PyCFunction)run     , METH_VARARGS,
564      "Evaluate the model at a given Q or Q, phi"},
565    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
566      "Evaluate the model at a given Q or Qx, Qy"},
567    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
568      "Evaluate the model at a given Q or Q, phi"},
569    {"calculate_VR",      (PyCFunction)calculate_VR     , METH_VARARGS,
570      "Evaluate VR"},   
571    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
572      "Evaluate the model at a given Q or Qx, Qy vector "},
573    {"reset",    (PyCFunction)reset   , METH_VARARGS,
574      "Reset pair correlation"},
575    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
576      "Set the dispersion model for a given parameter"},
577   {NULL}
578};
579
580static PyTypeObject CRectangularHollowPrismModelType = {
581    PyObject_HEAD_INIT(NULL)
582    0,                         /*ob_size*/
583    "CRectangularHollowPrismModel",             /*tp_name*/
584    sizeof(CRectangularHollowPrismModel),             /*tp_basicsize*/
585    0,                         /*tp_itemsize*/
586    (destructor)CRectangularHollowPrismModel_dealloc, /*tp_dealloc*/
587    0,                         /*tp_print*/
588    0,                         /*tp_getattr*/
589    0,                         /*tp_setattr*/
590    0,                         /*tp_compare*/
591    0,                         /*tp_repr*/
592    0,                         /*tp_as_number*/
593    0,                         /*tp_as_sequence*/
594    0,                         /*tp_as_mapping*/
595    0,                         /*tp_hash */
596    0,                         /*tp_call*/
597    0,                         /*tp_str*/
598    0,                         /*tp_getattro*/
599    0,                         /*tp_setattro*/
600    0,                         /*tp_as_buffer*/
601    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
602    "CRectangularHollowPrismModel objects",           /* tp_doc */
603    0,                         /* tp_traverse */
604    0,                         /* tp_clear */
605    0,                         /* tp_richcompare */
606    0,                         /* tp_weaklistoffset */
607    0,                         /* tp_iter */
608    0,                         /* tp_iternext */
609    CRectangularHollowPrismModel_methods,             /* tp_methods */
610    CRectangularHollowPrismModel_members,             /* tp_members */
611    0,                         /* tp_getset */
612    0,                         /* tp_base */
613    0,                         /* tp_dict */
614    0,                         /* tp_descr_get */
615    0,                         /* tp_descr_set */
616    0,                         /* tp_dictoffset */
617    (initproc)CRectangularHollowPrismModel_init,      /* tp_init */
618    0,                         /* tp_alloc */
619    CRectangularHollowPrismModel_new,                 /* tp_new */
620};
621
622
623//static PyMethodDef module_methods[] = {
624//    {NULL}
625//};
626
627/**
628 * Function used to add the model class to a module
629 * @param module: module to add the class to
630 */ 
631void addCRectangularHollowPrismModel(PyObject *module) {
632        PyObject *d;
633       
634    if (PyType_Ready(&CRectangularHollowPrismModelType) < 0)
635        return;
636
637    Py_INCREF(&CRectangularHollowPrismModelType);
638    PyModule_AddObject(module, "CRectangularHollowPrismModel", (PyObject *)&CRectangularHollowPrismModelType);
639   
640    d = PyModule_GetDict(module);
641    static char error_name[] = "CRectangularHollowPrismModel.error";
642    CRectangularHollowPrismModelError = PyErr_NewException(error_name, NULL, NULL);
643    PyDict_SetItemString(d, "CRectangularHollowPrismModelError", CRectangularHollowPrismModelError);
644}
645
Note: See TracBrowser for help on using the repository browser.