source: sasview/src/sans/models/c_extension/python_wrapper/generated/CHollowCylinderModel.cpp @ 400155b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 400155b was 400155b, checked in by gonzalezm, 9 years ago

Implementing request from ticket 261 - default number of bins in Annulus [Phi View] is now 36 and the first bin is now centered at 0 degrees

  • Property mode set to 100644
File size: 27.4 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CHollowCylinderModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\hollow_cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35
36}
37
38#include "hollow_cylinder.h"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CHollowCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    HollowCylinderModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CHollowCylinderModel;
57
58
59static void
60CHollowCylinderModel_dealloc(CHollowCylinderModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CHollowCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CHollowCylinderModel *self;
75   
76    self = (CHollowCylinderModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CHollowCylinderModel_init(CHollowCylinderModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89
90        self->model = new HollowCylinderModel();
91
92        // Initialize parameter dictionary
93        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
94        PyDict_SetItemString(self->params,"sldCyl",Py_BuildValue("d",0.000006300000));
95        PyDict_SetItemString(self->params,"core_radius",Py_BuildValue("d",20.000000000000));
96        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",90.000000000000));
97        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000000000));
98        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000001000000));
100        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.010000000000));
101        PyDict_SetItemString(self->params,"radius",Py_BuildValue("d",30.000000000000));
102        // Initialize dispersion / averaging parameter dict
103        DispersionVisitor* visitor = new DispersionVisitor();
104        PyObject * disp_dict;
105        disp_dict = PyDict_New();
106        self->model->core_radius.dispersion->accept_as_source(visitor, self->model->core_radius.dispersion, disp_dict);
107        PyDict_SetItemString(self->dispersion, "core_radius", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->radius.dispersion->accept_as_source(visitor, self->model->radius.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "radius", disp_dict);
111        disp_dict = PyDict_New();
112        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "length", disp_dict);
114        disp_dict = PyDict_New();
115        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
116        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
117        disp_dict = PyDict_New();
118        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
119        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
120
121
122         
123        // Create empty log
124        self->log = PyDict_New();
125       
126       
127
128    }
129    return 0;
130}
131
132static char name_params[] = "params";
133static char def_params[] = "Parameters";
134static char name_dispersion[] = "dispersion";
135static char def_dispersion[] = "Dispersion parameters";
136static char name_log[] = "log";
137static char def_log[] = "Log";
138
139static PyMemberDef CHollowCylinderModel_members[] = {
140    {name_params, T_OBJECT, offsetof(CHollowCylinderModel, params), 0, def_params},
141        {name_dispersion, T_OBJECT, offsetof(CHollowCylinderModel, dispersion), 0, def_dispersion},     
142    {name_log, T_OBJECT, offsetof(CHollowCylinderModel, log), 0, def_log},
143    {NULL}  /* Sentinel */
144};
145
146/** Read double from PyObject
147    @param p PyObject
148    @return double
149*/
150double CHollowCylinderModel_readDouble(PyObject *p) {
151    if (PyFloat_Check(p)==1) {
152        return (double)(((PyFloatObject *)(p))->ob_fval);
153    } else if (PyInt_Check(p)==1) {
154        return (double)(((PyIntObject *)(p))->ob_ival);
155    } else if (PyLong_Check(p)==1) {
156        return (double)PyLong_AsLong(p);
157    } else {
158        return 0.0;
159    }
160}
161/**
162 * Function to call to evaluate model
163 * @param args: input numpy array q[]
164 * @return: numpy array object
165 */
166 
167static PyObject *evaluateOneDim(HollowCylinderModel* model, PyArrayObject *q){
168    PyArrayObject *result;
169   
170    // Check validity of array q , q must be of dimension 1, an array of double
171    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
172    {
173        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
174        //PyErr_SetString(PyExc_ValueError , message);
175        return NULL;
176    }
177    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
178        if (result == NULL) {
179        const char * message= "Could not create result ";
180        PyErr_SetString(PyExc_RuntimeError , message);
181                return NULL;
182        }
183#pragma omp parallel for
184         for (int i = 0; i < q->dimensions[0]; i++){
185      double q_value  = *(double *)(q->data + i*q->strides[0]);
186      double *result_value = (double *)(result->data + i*result->strides[0]);
187      *result_value =(*model)(q_value);
188        }
189    return PyArray_Return(result); 
190 }
191
192 /**
193 * Function to call to evaluate model
194 * @param args: input numpy array  [x[],y[]]
195 * @return: numpy array object
196 */
197 static PyObject * evaluateTwoDimXY( HollowCylinderModel* model, 
198                              PyArrayObject *x, PyArrayObject *y)
199 {
200    PyArrayObject *result;
201    int x_len, y_len, dims[1];
202    //check validity of input vectors
203    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
204        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
205        || y->dimensions[0] != x->dimensions[0]){
206        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
207        PyErr_SetString(PyExc_ValueError , message); 
208        return NULL;
209    }
210   
211        if (PyArray_Check(x) && PyArray_Check(y)) {
212               
213            x_len = dims[0]= x->dimensions[0];
214        y_len = dims[0]= y->dimensions[0];
215           
216            // Make a new double matrix of same dims
217        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
218        if (result == NULL){
219            const char * message= "Could not create result ";
220        PyErr_SetString(PyExc_RuntimeError , message);
221            return NULL;
222            }
223       
224        /* Do the calculation. */
225#pragma omp parallel for
226        for (int i=0; i< x_len; i++) {
227            double x_value = *(double *)(x->data + i*x->strides[0]);
228                    double y_value = *(double *)(y->data + i*y->strides[0]);
229                        double *result_value = (double *)(result->data +
230                              i*result->strides[0]);
231                        *result_value = (*model)(x_value, y_value);
232        }           
233        return PyArray_Return(result); 
234       
235        }else{
236                    PyErr_SetString(CHollowCylinderModelError, 
237                   "CHollowCylinderModel.evaluateTwoDimXY couldn't run.");
238                return NULL;
239                }       
240}
241/**
242 *  evalDistribution function evaluate a model function with input vector
243 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
244 *
245 */ 
246static PyObject * evalDistribution(CHollowCylinderModel *self, PyObject *args){
247        PyObject *qx, *qy;
248        PyArrayObject * pars;
249        int npars ,mpars;
250       
251        // Get parameters
252       
253            // Reader parameter dictionary
254    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
255    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
256    self->model->core_radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_radius") );
257    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
258    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
259    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
260    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
261    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
262    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
263    // Read in dispersion parameters
264    PyObject* disp_dict;
265    DispersionVisitor* visitor = new DispersionVisitor();
266    disp_dict = PyDict_GetItemString(self->dispersion, "core_radius");
267    self->model->core_radius.dispersion->accept_as_destination(visitor, self->model->core_radius.dispersion, disp_dict);
268    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
269    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
270    disp_dict = PyDict_GetItemString(self->dispersion, "length");
271    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
272    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
273    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
274    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
275    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
276
277       
278        // Get input and determine whether we have to supply a 1D or 2D return value.
279        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
280            PyErr_SetString(CHollowCylinderModelError, 
281                "CHollowCylinderModel.evalDistribution expects a q value.");
282                return NULL;
283        }
284    // Check params
285       
286    if(PyArray_Check(pars)==1) {
287               
288            // Length of list should 1 or 2
289            npars = pars->nd; 
290            if(npars==1) {
291                // input is a numpy array
292                if (PyArray_Check(pars)) {
293                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
294                    }
295                }else{
296                    PyErr_SetString(CHollowCylinderModelError, 
297                   "CHollowCylinderModel.evalDistribution expect numpy array of one dimension.");
298                return NULL;
299                }
300    }else if( PyList_Check(pars)==1) {
301        // Length of list should be 2 for I(qx,qy)
302            mpars = PyList_GET_SIZE(pars); 
303            if(mpars!=2) {
304                PyErr_SetString(CHollowCylinderModelError, 
305                        "CHollowCylinderModel.evalDistribution expects a list of dimension 2.");
306                return NULL;
307            }
308             qx = PyList_GET_ITEM(pars,0);
309             qy = PyList_GET_ITEM(pars,1);
310             if (PyArray_Check(qx) && PyArray_Check(qy)) {
311                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
312                           (PyArrayObject*)qy);
313                 }else{
314                    PyErr_SetString(CHollowCylinderModelError, 
315                   "CHollowCylinderModel.evalDistribution expect 2 numpy arrays in list.");
316                return NULL;
317             }
318        }
319        PyErr_SetString(CHollowCylinderModelError, 
320                   "CHollowCylinderModel.evalDistribution couln't be run.");
321        return NULL;
322       
323}
324
325/**
326 * Function to call to evaluate model
327 * @param args: input q or [q,phi]
328 * @return: function value
329 */
330static PyObject * run(CHollowCylinderModel *self, PyObject *args) {
331        double q_value, phi_value;
332        PyObject* pars;
333        int npars;
334       
335        // Get parameters
336       
337            // Reader parameter dictionary
338    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
339    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
340    self->model->core_radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_radius") );
341    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
342    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
343    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
344    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
345    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
346    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
347    // Read in dispersion parameters
348    PyObject* disp_dict;
349    DispersionVisitor* visitor = new DispersionVisitor();
350    disp_dict = PyDict_GetItemString(self->dispersion, "core_radius");
351    self->model->core_radius.dispersion->accept_as_destination(visitor, self->model->core_radius.dispersion, disp_dict);
352    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
353    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
354    disp_dict = PyDict_GetItemString(self->dispersion, "length");
355    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
356    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
357    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
358    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
359    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
360
361       
362        // Get input and determine whether we have to supply a 1D or 2D return value.
363        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
364            PyErr_SetString(CHollowCylinderModelError, 
365                "CHollowCylinderModel.run expects a q value.");
366                return NULL;
367        }
368         
369        // Check params
370        if( PyList_Check(pars)==1) {
371               
372                // Length of list should be 2 for I(q,phi)
373            npars = PyList_GET_SIZE(pars); 
374            if(npars!=2) {
375                PyErr_SetString(CHollowCylinderModelError, 
376                        "CHollowCylinderModel.run expects a double or a list of dimension 2.");
377                return NULL;
378            }
379            // We have a vector q, get the q and phi values at which
380            // to evaluate I(q,phi)
381            q_value = CHollowCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
382            phi_value = CHollowCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
383            // Skip zero
384            if (q_value==0) {
385                return Py_BuildValue("d",0.0);
386            }
387                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
388
389        } else {
390
391                // We have a scalar q, we will evaluate I(q)
392                q_value = CHollowCylinderModel_readDouble(pars);               
393               
394                return Py_BuildValue("d",(*(self->model))(q_value));
395        }       
396}
397/**
398 * Function to call to calculate_ER
399 * @return: effective radius value
400 */
401static PyObject * calculate_ER(CHollowCylinderModel *self) {
402
403        // Get parameters
404       
405            // Reader parameter dictionary
406    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
407    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
408    self->model->core_radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_radius") );
409    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
410    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
411    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
412    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
413    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
414    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
415    // Read in dispersion parameters
416    PyObject* disp_dict;
417    DispersionVisitor* visitor = new DispersionVisitor();
418    disp_dict = PyDict_GetItemString(self->dispersion, "core_radius");
419    self->model->core_radius.dispersion->accept_as_destination(visitor, self->model->core_radius.dispersion, disp_dict);
420    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
421    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
422    disp_dict = PyDict_GetItemString(self->dispersion, "length");
423    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
424    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
425    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
426    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
427    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
428
429               
430        return Py_BuildValue("d",(*(self->model)).calculate_ER());
431
432}
433/**
434 * Function to call to cal the ratio shell volume/ total volume
435 * @return: the ratio shell volume/ total volume
436 */
437static PyObject * calculate_VR(CHollowCylinderModel *self) {
438
439        // Get parameters
440       
441            // Reader parameter dictionary
442    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
443    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
444    self->model->core_radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_radius") );
445    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
446    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
447    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
448    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
449    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
450    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
451    // Read in dispersion parameters
452    PyObject* disp_dict;
453    DispersionVisitor* visitor = new DispersionVisitor();
454    disp_dict = PyDict_GetItemString(self->dispersion, "core_radius");
455    self->model->core_radius.dispersion->accept_as_destination(visitor, self->model->core_radius.dispersion, disp_dict);
456    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
457    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
458    disp_dict = PyDict_GetItemString(self->dispersion, "length");
459    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
460    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
461    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
462    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
463    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
464
465               
466        return Py_BuildValue("d",(*(self->model)).calculate_VR());
467
468}
469/**
470 * Function to call to evaluate model in cartesian coordinates
471 * @param args: input q or [qx, qy]]
472 * @return: function value
473 */
474static PyObject * runXY(CHollowCylinderModel *self, PyObject *args) {
475        double qx_value, qy_value;
476        PyObject* pars;
477        int npars;
478       
479        // Get parameters
480       
481            // Reader parameter dictionary
482    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
483    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
484    self->model->core_radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_radius") );
485    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
486    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
487    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
488    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
489    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
490    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
491    // Read in dispersion parameters
492    PyObject* disp_dict;
493    DispersionVisitor* visitor = new DispersionVisitor();
494    disp_dict = PyDict_GetItemString(self->dispersion, "core_radius");
495    self->model->core_radius.dispersion->accept_as_destination(visitor, self->model->core_radius.dispersion, disp_dict);
496    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
497    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
498    disp_dict = PyDict_GetItemString(self->dispersion, "length");
499    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
500    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
501    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
502    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
503    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
504
505       
506        // Get input and determine whether we have to supply a 1D or 2D return value.
507        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
508            PyErr_SetString(CHollowCylinderModelError, 
509                "CHollowCylinderModel.run expects a q value.");
510                return NULL;
511        }
512         
513        // Check params
514        if( PyList_Check(pars)==1) {
515               
516                // Length of list should be 2 for I(qx, qy))
517            npars = PyList_GET_SIZE(pars); 
518            if(npars!=2) {
519                PyErr_SetString(CHollowCylinderModelError, 
520                        "CHollowCylinderModel.run expects a double or a list of dimension 2.");
521                return NULL;
522            }
523            // We have a vector q, get the qx and qy values at which
524            // to evaluate I(qx,qy)
525            qx_value = CHollowCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
526            qy_value = CHollowCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
527            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
528
529        } else {
530
531                // We have a scalar q, we will evaluate I(q)
532                qx_value = CHollowCylinderModel_readDouble(pars);               
533               
534                return Py_BuildValue("d",(*(self->model))(qx_value));
535        }       
536}
537
538static PyObject * reset(CHollowCylinderModel *self, PyObject *args) {
539   
540
541    return Py_BuildValue("d",0.0);
542}
543
544static PyObject * set_dispersion(CHollowCylinderModel *self, PyObject *args) {
545        PyObject * disp;
546        const char * par_name;
547
548        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
549            PyErr_SetString(CHollowCylinderModelError,
550                "CHollowCylinderModel.set_dispersion expects a DispersionModel object.");
551                return NULL;
552        }
553        void *temp = PyCObject_AsVoidPtr(disp);
554        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
555
556
557        // Ugliness necessary to go from python to C
558            // TODO: refactor this
559    if (!strcmp(par_name, "core_radius")) {
560        self->model->core_radius.dispersion = dispersion;
561    } else    if (!strcmp(par_name, "radius")) {
562        self->model->radius.dispersion = dispersion;
563    } else    if (!strcmp(par_name, "length")) {
564        self->model->length.dispersion = dispersion;
565    } else    if (!strcmp(par_name, "axis_theta")) {
566        self->model->axis_theta.dispersion = dispersion;
567    } else    if (!strcmp(par_name, "axis_phi")) {
568        self->model->axis_phi.dispersion = dispersion;
569    } else {
570            PyErr_SetString(CHollowCylinderModelError,
571                "CHollowCylinderModel.set_dispersion expects a valid parameter name.");
572                return NULL;
573        }
574
575        DispersionVisitor* visitor = new DispersionVisitor();
576        PyObject * disp_dict = PyDict_New();
577        dispersion->accept_as_source(visitor, dispersion, disp_dict);
578        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
579    return Py_BuildValue("i",1);
580}
581
582
583static PyMethodDef CHollowCylinderModel_methods[] = {
584    {"run",      (PyCFunction)run     , METH_VARARGS,
585      "Evaluate the model at a given Q or Q, phi"},
586    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
587      "Evaluate the model at a given Q or Qx, Qy"},
588    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
589      "Evaluate the model at a given Q or Q, phi"},
590    {"calculate_VR",      (PyCFunction)calculate_VR     , METH_VARARGS,
591      "Evaluate VR"},   
592    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
593      "Evaluate the model at a given Q or Qx, Qy vector "},
594    {"reset",    (PyCFunction)reset   , METH_VARARGS,
595      "Reset pair correlation"},
596    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
597      "Set the dispersion model for a given parameter"},
598   {NULL}
599};
600
601static PyTypeObject CHollowCylinderModelType = {
602    PyObject_HEAD_INIT(NULL)
603    0,                         /*ob_size*/
604    "CHollowCylinderModel",             /*tp_name*/
605    sizeof(CHollowCylinderModel),             /*tp_basicsize*/
606    0,                         /*tp_itemsize*/
607    (destructor)CHollowCylinderModel_dealloc, /*tp_dealloc*/
608    0,                         /*tp_print*/
609    0,                         /*tp_getattr*/
610    0,                         /*tp_setattr*/
611    0,                         /*tp_compare*/
612    0,                         /*tp_repr*/
613    0,                         /*tp_as_number*/
614    0,                         /*tp_as_sequence*/
615    0,                         /*tp_as_mapping*/
616    0,                         /*tp_hash */
617    0,                         /*tp_call*/
618    0,                         /*tp_str*/
619    0,                         /*tp_getattro*/
620    0,                         /*tp_setattro*/
621    0,                         /*tp_as_buffer*/
622    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
623    "CHollowCylinderModel objects",           /* tp_doc */
624    0,                         /* tp_traverse */
625    0,                         /* tp_clear */
626    0,                         /* tp_richcompare */
627    0,                         /* tp_weaklistoffset */
628    0,                         /* tp_iter */
629    0,                         /* tp_iternext */
630    CHollowCylinderModel_methods,             /* tp_methods */
631    CHollowCylinderModel_members,             /* tp_members */
632    0,                         /* tp_getset */
633    0,                         /* tp_base */
634    0,                         /* tp_dict */
635    0,                         /* tp_descr_get */
636    0,                         /* tp_descr_set */
637    0,                         /* tp_dictoffset */
638    (initproc)CHollowCylinderModel_init,      /* tp_init */
639    0,                         /* tp_alloc */
640    CHollowCylinderModel_new,                 /* tp_new */
641};
642
643
644//static PyMethodDef module_methods[] = {
645//    {NULL}
646//};
647
648/**
649 * Function used to add the model class to a module
650 * @param module: module to add the class to
651 */ 
652void addCHollowCylinderModel(PyObject *module) {
653        PyObject *d;
654       
655    if (PyType_Ready(&CHollowCylinderModelType) < 0)
656        return;
657
658    Py_INCREF(&CHollowCylinderModelType);
659    PyModule_AddObject(module, "CHollowCylinderModel", (PyObject *)&CHollowCylinderModelType);
660   
661    d = PyModule_GetDict(module);
662    static char error_name[] = "CHollowCylinderModel.error";
663    CHollowCylinderModelError = PyErr_NewException(error_name, NULL, NULL);
664    PyDict_SetItemString(d, "CHollowCylinderModelError", CHollowCylinderModelError);
665}
666
Note: See TracBrowser for help on using the repository browser.