############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\TwoYukawa.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CTwoYukawaModel def create_TwoYukawaModel(): """ Create a model instance """ obj = TwoYukawaModel() # CTwoYukawaModel.__init__(obj) is called by # the TwoYukawaModel constructor return obj class TwoYukawaModel(CTwoYukawaModel, BaseComponent): """ Class that evaluates a TwoYukawaModel model. This file was auto-generated from src\sans\models\include\TwoYukawa.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * volfraction = 0.2 * effect_radius = 50.0 [A] * scale_K1 = 6.0 * decayConst_Z1 = 10.0 * scale_K2 = -1.0 * decayConst_Z2 = 2.0 """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CTwoYukawaModel.__init__, (self,)) CTwoYukawaModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "TwoYukawaModel" ## Model description self.description = """ Structure factor for interacting particles: . Calculates the structure factor, S(q), for a monodisperse spherical particle interacting through a two-Yukawa potential. The Mean Spherical Approximation is used as the closure to solve the Ornstein-Zernicke equations. The function calculated is S(q), based on the solution of the Ornstein-Zernicke equations using the Two-Yukawa potential (in its scaled form, r=r/diam): Radius is that of the hard core. The returned value is dimensionless. """ ## Parameter details [units, min, max] self.details = {} self.details['volfraction'] = ['', None, None] self.details['effect_radius'] = ['[A]', None, None] self.details['scale_K1'] = ['', None, None] self.details['decayConst_Z1'] = ['', None, None] self.details['scale_K2'] = ['', None, None] self.details['decayConst_Z2'] = ['', None, None] ## fittable parameters self.fixed = [] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_TwoYukawaModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(TwoYukawaModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CTwoYukawaModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CTwoYukawaModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CTwoYukawaModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CTwoYukawaModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CTwoYukawaModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CTwoYukawaModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file