source: sasview/src/sans/models/TriaxialEllipsoidModel.py @ 400155b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 400155b was 400155b, checked in by gonzalezm, 9 years ago

Implementing request from ticket 261 - default number of bins in Annulus [Phi View] is now 36 and the first bin is now centered at 0 degrees

  • Property mode set to 100644
File size: 6.3 KB
Line 
1##############################################################################
2# This software was developed by the University of Tennessee as part of the
3# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4# project funded by the US National Science Foundation.
5#
6# If you use DANSE applications to do scientific research that leads to
7# publication, we ask that you acknowledge the use of the software with the
8# following sentence:
9#
10# This work benefited from DANSE software developed under NSF award DMR-0520547
11#
12# Copyright 2008-2011, University of Tennessee
13##############################################################################
14
15"""
16Provide functionality for a C extension model
17
18.. WARNING::
19
20   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
21   DO NOT MODIFY THIS FILE, MODIFY
22   src\sans\models\include\triaxial_ellipsoid.h
23   AND RE-RUN THE GENERATOR SCRIPT
24"""
25
26from sans.models.BaseComponent import BaseComponent
27from sans.models.sans_extension.c_models import CTriaxialEllipsoidModel
28
29def create_TriaxialEllipsoidModel():
30    """
31       Create a model instance
32    """
33    obj = TriaxialEllipsoidModel()
34    # CTriaxialEllipsoidModel.__init__(obj) is called by
35    # the TriaxialEllipsoidModel constructor
36    return obj
37
38class TriaxialEllipsoidModel(CTriaxialEllipsoidModel, BaseComponent):
39    """
40    Class that evaluates a TriaxialEllipsoidModel model.
41    This file was auto-generated from src\sans\models\include\triaxial_ellipsoid.h.
42    Refer to that file and the structure it contains
43    for details of the model.
44   
45    List of default parameters:
46
47    * scale           = 1.0
48    * semi_axisA      = 35.0 [A]
49    * semi_axisB      = 100.0 [A]
50    * semi_axisC      = 400.0 [A]
51    * sldEll          = 1e-06 [1/A^(2)]
52    * sldSolv         = 6.3e-06 [1/A^(2)]
53    * background      = 0.0 [1/cm]
54    * axis_theta      = 57.325 [deg]
55    * axis_phi        = 57.325 [deg]
56    * axis_psi        = 0.0 [deg]
57
58    """
59       
60    def __init__(self, multfactor=1):
61        """ Initialization """
62        self.__dict__ = {}
63       
64        # Initialize BaseComponent first, then sphere
65        BaseComponent.__init__(self)
66        #apply(CTriaxialEllipsoidModel.__init__, (self,))
67
68        CTriaxialEllipsoidModel.__init__(self)
69        self.is_multifunc = False
70                       
71        ## Name of the model
72        self.name = "TriaxialEllipsoidModel"
73        ## Model description
74        self.description = """
75        Note: During fitting ensure that the inequality A<B<C is not
76                violated. Otherwise the calculation will
77                not be correct.
78        """
79       
80        ## Parameter details [units, min, max]
81        self.details = {}
82        self.details['scale'] = ['', None, None]
83        self.details['semi_axisA'] = ['[A]', None, None]
84        self.details['semi_axisB'] = ['[A]', None, None]
85        self.details['semi_axisC'] = ['[A]', None, None]
86        self.details['sldEll'] = ['[1/A^(2)]', None, None]
87        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
88        self.details['background'] = ['[1/cm]', None, None]
89        self.details['axis_theta'] = ['[deg]', None, None]
90        self.details['axis_phi'] = ['[deg]', None, None]
91        self.details['axis_psi'] = ['[deg]', None, None]
92
93        ## fittable parameters
94        self.fixed = ['axis_psi.width',
95                      'axis_phi.width',
96                      'axis_theta.width',
97                      'semi_axisA.width',
98                      'semi_axisB.width',
99                      'semi_axisC.width']
100       
101        ## non-fittable parameters
102        self.non_fittable = []
103       
104        ## parameters with orientation
105        self.orientation_params = ['axis_psi',
106                                   'axis_phi',
107                                   'axis_theta',
108                                   'axis_psi.width',
109                                   'axis_phi.width',
110                                   'axis_theta.width']
111
112        ## parameters with magnetism
113        self.magnetic_params = []
114
115        self.category = None
116        self.multiplicity_info = None
117       
118    def __setstate__(self, state):
119        """
120        restore the state of a model from pickle
121        """
122        self.__dict__, self.params, self.dispersion = state
123       
124    def __reduce_ex__(self, proto):
125        """
126        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
127        c model.
128        """
129        state = (self.__dict__, self.params, self.dispersion)
130        return (create_TriaxialEllipsoidModel, tuple(), state, None, None)
131       
132    def clone(self):
133        """ Return a identical copy of self """
134        return self._clone(TriaxialEllipsoidModel())   
135       
136    def run(self, x=0.0):
137        """
138        Evaluate the model
139       
140        :param x: input q, or [q,phi]
141       
142        :return: scattering function P(q)
143       
144        """
145        return CTriaxialEllipsoidModel.run(self, x)
146   
147    def runXY(self, x=0.0):
148        """
149        Evaluate the model in cartesian coordinates
150       
151        :param x: input q, or [qx, qy]
152       
153        :return: scattering function P(q)
154       
155        """
156        return CTriaxialEllipsoidModel.runXY(self, x)
157       
158    def evalDistribution(self, x):
159        """
160        Evaluate the model in cartesian coordinates
161       
162        :param x: input q[], or [qx[], qy[]]
163       
164        :return: scattering function P(q[])
165       
166        """
167        return CTriaxialEllipsoidModel.evalDistribution(self, x)
168       
169    def calculate_ER(self):
170        """
171        Calculate the effective radius for P(q)*S(q)
172       
173        :return: the value of the effective radius
174       
175        """       
176        return CTriaxialEllipsoidModel.calculate_ER(self)
177       
178    def calculate_VR(self):
179        """
180        Calculate the volf ratio for P(q)*S(q)
181       
182        :return: the value of the volf ratio
183       
184        """       
185        return CTriaxialEllipsoidModel.calculate_VR(self)
186             
187    def set_dispersion(self, parameter, dispersion):
188        """
189        Set the dispersion object for a model parameter
190       
191        :param parameter: name of the parameter [string]
192        :param dispersion: dispersion object of type DispersionModel
193       
194        """
195        return CTriaxialEllipsoidModel.set_dispersion(self,
196               parameter, dispersion.cdisp)
197       
198   
199# End of file
200
Note: See TracBrowser for help on using the repository browser.