############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\raspberry.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CRaspBerryModel def create_RaspBerryModel(): """ Create a model instance """ obj = RaspBerryModel() # CRaspBerryModel.__init__(obj) is called by # the RaspBerryModel constructor return obj class RaspBerryModel(CRaspBerryModel, BaseComponent): """ Class that evaluates a RaspBerryModel model. This file was auto-generated from src\sans\models\include\raspberry.h. Refer to that file and the structure it contains for details of the model. List of default parameters: volf_Lsph = 0.05 radius_Lsph = 5000.0 [A] sld_Lsph = -4e-07 [1/A^(2)] volf_Ssph = 0.005 radius_Ssph = 100.0 [A] surfrac_Ssph = 0.4 sld_Ssph = 3.5e-06 [1/A^(2)] delta_Ssph = 0.0 sld_solv = 6.3e-06 [1/A^(2)] background = 0.0 [1/cm] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CRaspBerryModel.__init__, (self,)) CRaspBerryModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "RaspBerryModel" ## Model description self.description = """ RaspBerryModel: volf_Lsph = volume fraction large spheres radius_Lsph = radius large sphere (A) sld_Lsph = sld large sphere (A-2) volf_Ssph = volume fraction small spheres radius_Ssph = radius small sphere (A) surfrac_Ssph = fraction of small spheres at surface sld_Ssph = sld small sphere delta_Ssph = small sphere penetration (A) sld_solv = sld solvent background = background (cm-1) Ref: J. coll. inter. sci. (2010) vol. 343 (1) pp. 36-41. """ ## Parameter details [units, min, max] self.details = {} self.details['volf_Lsph'] = ['', None, None] self.details['radius_Lsph'] = ['[A]', None, None] self.details['sld_Lsph'] = ['[1/A^(2)]', None, None] self.details['volf_Ssph'] = ['', None, None] self.details['radius_Ssph'] = ['[A]', None, None] self.details['surfrac_Ssph'] = ['', None, None] self.details['sld_Ssph'] = ['[1/A^(2)]', None, None] self.details['delta_Ssph'] = ['', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed = ['radius_Lsph.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_RaspBerryModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(RaspBerryModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CRaspBerryModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CRaspBerryModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CRaspBerryModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CRaspBerryModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CRaspBerryModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CRaspBerryModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file