############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\micelleSphCore.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CMicelleSphCoreModel def create_MicelleSphCoreModel(): """ Create a model instance """ obj = MicelleSphCoreModel() # CMicelleSphCoreModel.__init__(obj) is called by # the MicelleSphCoreModel constructor return obj class MicelleSphCoreModel(CMicelleSphCoreModel, BaseComponent): """ Class that evaluates a MicelleSphCoreModel model. This file was auto-generated from src\sans\models\include\micelleSphCore.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * ndensity = 8.94e+15 [1/cm^(3)] * v_core = 62624.0 [A^3] * v_corona = 61940.0 [A^(3)] * rho_solv = 6.4e-06 [1/A^(2)] * rho_core = 3.4e-07 [1/A^(2)] * rho_corona = 8e-07 [1/A^(2)] * radius_core = 45.0 [A] * radius_gyr = 20.0 [A] * d_penetration = 1.0 * n_aggreg = 6.0 * background = 0.0 [1/cm] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CMicelleSphCoreModel.__init__, (self,)) CMicelleSphCoreModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "MicelleSphCoreModel" ## Model description self.description = """ Model parameters: ndensity : number density of micelles v_core: volume block in core v_corona: volume block in corona rho_solv: sld of solvent rho_core: sld of core rho_corona: sld of corona radius_core: radius of core radius_gyr: radius of gyration of chains in corona d_penetration: close to unity, mimics non-penetration of gaussian chains n_aggreg: aggregation number of the micelle background: incoherent background scale : scale factor """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['ndensity'] = ['[1/cm^(3)]', None, None] self.details['v_core'] = ['[A^3]', None, None] self.details['v_corona'] = ['[A^(3)]', None, None] self.details['rho_solv'] = ['[1/A^(2)]', None, None] self.details['rho_core'] = ['[1/A^(2)]', None, None] self.details['rho_corona'] = ['[1/A^(2)]', None, None] self.details['radius_core'] = ['[A]', None, None] self.details['radius_gyr'] = ['[A]', None, None] self.details['d_penetration'] = ['', None, None] self.details['n_aggreg'] = ['', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed = ['radius_core.width', 'radius_gyr.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_MicelleSphCoreModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(MicelleSphCoreModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CMicelleSphCoreModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CMicelleSphCoreModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CMicelleSphCoreModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CMicelleSphCoreModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CMicelleSphCoreModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CMicelleSphCoreModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file