############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\masssurfacefractal.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CMassSurfaceFractal def create_MassSurfaceFractal(): """ Create a model instance """ obj = MassSurfaceFractal() # CMassSurfaceFractal.__init__(obj) is called by # the MassSurfaceFractal constructor return obj class MassSurfaceFractal(CMassSurfaceFractal, BaseComponent): """ Class that evaluates a MassSurfaceFractal model. This file was auto-generated from src\sans\models\include\masssurfacefractal.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * mass_dim = 1.8 * surface_dim = 2.3 * cluster_rg = 86.7 [A] * primary_rg = 4000.0 [A] * background = 0.0 """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CMassSurfaceFractal.__init__, (self,)) CMassSurfaceFractal.__init__(self) self.is_multifunc = False ## Name of the model self.name = "MassSurfaceFractal" ## Model description self.description = """ The scattering intensity I(x) = scale*P(x) + background, p(x)= {[1+(x^2*a)]^(Dm/2) * [1+(x^2*b)]^(6-Ds-Dm)/2}^(-1) a = Rg^2/(3*Dm/2) b = rg^2/(3*(6-Ds-Dm)/2) scale = scale factor * N*Volume^2*contrast^2 mass_dim = Dm (mass fractal dimension) surface_dim = Ds cluster_rg = Rg primary_rg = rg background = background Ref: Schmidt, J Appl Cryst, eq(19), (1991), 24, 414-435 : Hurd, Schaefer, Martin, Phys Rev A, eq(2),(1987),35, 2361-2364 Note that 0 < Ds< 6 and 0 < Dm < 6. """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['mass_dim'] = ['', None, None] self.details['surface_dim'] = ['', None, None] self.details['cluster_rg'] = ['[A]', None, None] self.details['primary_rg'] = ['[A]', None, None] self.details['background'] = ['', None, None] ## fittable parameters self.fixed = [] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_MassSurfaceFractal, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(MassSurfaceFractal()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CMassSurfaceFractal.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CMassSurfaceFractal.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CMassSurfaceFractal.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CMassSurfaceFractal.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CMassSurfaceFractal.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CMassSurfaceFractal.set_dispersion(self, parameter, dispersion.cdisp) # End of file