############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\lamellarFF_HG.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CLamellarFFHGModel def create_LamellarFFHGModel(): """ Create a model instance """ obj = LamellarFFHGModel() # CLamellarFFHGModel.__init__(obj) is called by # the LamellarFFHGModel constructor return obj class LamellarFFHGModel(CLamellarFFHGModel, BaseComponent): """ Class that evaluates a LamellarFFHGModel model. This file was auto-generated from src\sans\models\include\lamellarFF_HG.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * t_length = 15.0 [A] * h_thickness = 10.0 [A] * sld_tail = 4e-07 [1/A^(2)] * sld_head = 3e-06 [1/A^(2)] * sld_solvent = 6e-06 [1/A^(2)] * background = 0.0 [1/cm] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CLamellarFFHGModel.__init__, (self,)) CLamellarFFHGModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "LamellarFFHGModel" ## Model description self.description = """ Parameters: t_length = tail length, h_thickness = head thickness, scale = Scale factor, background = incoherent Background sld_tail = tail scattering length density , sld_solvent = solvent scattering length density. NOTE: The total bilayer thickness = 2(h_thickness+ t_length). """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['t_length'] = ['[A]', None, None] self.details['h_thickness'] = ['[A]', None, None] self.details['sld_tail'] = ['[1/A^(2)]', None, None] self.details['sld_head'] = ['[1/A^(2)]', None, None] self.details['sld_solvent'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed = ['t_length.width', 'h_thickness.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_LamellarFFHGModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(LamellarFFHGModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CLamellarFFHGModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CLamellarFFHGModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CLamellarFFHGModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CLamellarFFHGModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CLamellarFFHGModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CLamellarFFHGModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file