############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\gaussian.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CGaussian def create_Gaussian(): """ Create a model instance """ obj = Gaussian() # CGaussian.__init__(obj) is called by # the Gaussian constructor return obj class Gaussian(CGaussian, BaseComponent): """ Class that evaluates a Gaussian model. This file was auto-generated from src\sans\models\include\gaussian.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * sigma = 1.0 * center = 0.0 """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CGaussian.__init__, (self,)) CGaussian.__init__(self) self.is_multifunc = False ## Name of the model self.name = "Gaussian" ## Model description self.description = """ f(x)=scale * 1/(sigma^2*2pi)e^(-(x-mu)^2/2sigma^2) """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['sigma'] = ['', None, None] self.details['center'] = ['', None, None] ## fittable parameters self.fixed = [] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_Gaussian, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(Gaussian()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CGaussian.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CGaussian.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CGaussian.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CGaussian.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CGaussian.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CGaussian.set_dispersion(self, parameter, dispersion.cdisp) # End of file