############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\elliptical_cylinder.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CEllipticalCylinderModel def create_EllipticalCylinderModel(): """ Create a model instance """ obj = EllipticalCylinderModel() # CEllipticalCylinderModel.__init__(obj) is called by # the EllipticalCylinderModel constructor return obj class EllipticalCylinderModel(CEllipticalCylinderModel, BaseComponent): """ Class that evaluates a EllipticalCylinderModel model. This file was auto-generated from src\sans\models\include\elliptical_cylinder.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * r_minor = 20.0 [A] * scale = 1.0 * r_ratio = 1.5 * length = 400.0 [A] * sldCyl = 4e-06 [1/A^(2)] * sldSolv = 1e-06 [1/A^(2)] * background = 0.0 [1/cm] * cyl_theta = 90.0 [deg] * cyl_phi = 0.0 [deg] * cyl_psi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CEllipticalCylinderModel.__init__, (self,)) CEllipticalCylinderModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "EllipticalCylinderModel" ## Model description self.description = """ Model parameters: r_minor = the radius of minor axis of the cross section r_ratio = the ratio of (r_major /r_minor >= 1) length = the length of the cylinder sldCyl = SLD of the cylinder sldSolv = SLD of solvent - background = incoherent background """ ## Parameter details [units, min, max] self.details = {} self.details['r_minor'] = ['[A]', None, None] self.details['scale'] = ['', None, None] self.details['r_ratio'] = ['', None, None] self.details['length'] = ['[A]', None, None] self.details['sldCyl'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['cyl_theta'] = ['[deg]', None, None] self.details['cyl_phi'] = ['[deg]', None, None] self.details['cyl_psi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width', 'length.width', 'r_minor.width', 'r_ratio.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['cyl_phi', 'cyl_theta', 'cyl_psi', 'cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_EllipticalCylinderModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(EllipticalCylinderModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CEllipticalCylinderModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CEllipticalCylinderModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CEllipticalCylinderModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CEllipticalCylinderModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CEllipticalCylinderModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CEllipticalCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file