############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\DiamCyl.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CDiamCylFunc def create_DiamCylFunc(): """ Create a model instance """ obj = DiamCylFunc() # CDiamCylFunc.__init__(obj) is called by # the DiamCylFunc constructor return obj class DiamCylFunc(CDiamCylFunc, BaseComponent): """ Class that evaluates a DiamCylFunc model. This file was auto-generated from src\sans\models\include\DiamCyl.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * radius = 20.0 A * length = 400.0 A """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CDiamCylFunc.__init__, (self,)) CDiamCylFunc.__init__(self) self.is_multifunc = False ## Name of the model self.name = "DiamCylFunc" ## Model description self.description = """ To calculate the 2nd virial coefficient for the non-spherical object, then find the radius of sphere that has this value of virial coefficient. """ ## Parameter details [units, min, max] self.details = {} self.details['radius'] = ['A', None, None] self.details['length'] = ['A', None, None] ## fittable parameters self.fixed = ['radius.width', 'length.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_DiamCylFunc, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(DiamCylFunc()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CDiamCylFunc.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CDiamCylFunc.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CDiamCylFunc.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CDiamCylFunc.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CDiamCylFunc.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CDiamCylFunc.set_dispersion(self, parameter, dispersion.cdisp) # End of file