############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\core_shell.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CCoreShellModel def create_CoreShellModel(): """ Create a model instance """ obj = CoreShellModel() # CCoreShellModel.__init__(obj) is called by # the CoreShellModel constructor return obj class CoreShellModel(CCoreShellModel, BaseComponent): """ Class that evaluates a CoreShellModel model. This file was auto-generated from src\sans\models\include\core_shell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * radius = 60.0 [A] * scale = 1.0 * thickness = 10.0 [A] * core_sld = 1e-06 [1/A^(2)] * shell_sld = 2e-06 [1/A^(2)] * solvent_sld = 3e-06 [1/A^(2)] * background = 0.0 [1/cm] * M0_sld_shell = 0.0 [1/A^(2)] * M_theta_shell = 0.0 [deg] * M_phi_shell = 0.0 [deg] * M0_sld_core = 0.0 [1/A^(2)] * M_theta_core = 0.0 [deg] * M_phi_core = 0.0 [deg] * M0_sld_solv = 0.0 [1/A^(2)] * M_theta_solv = 0.0 [deg] * M_phi_solv = 0.0 [deg] * Up_frac_i = 0.5 [u/(u+d)] * Up_frac_f = 0.5 [u/(u+d)] * Up_theta = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCoreShellModel.__init__, (self,)) CCoreShellModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "CoreShellModel" ## Model description self.description = """ Form factor for a monodisperse spherical particle with particle with a core-shell structure: The form factor is normalized by the total particle volume. radius: core radius, thickness: shell thickness Ref: Guinier, A. and G. Fournet, John Wiley and Sons, New York, 1955. """ ## Parameter details [units, min, max] self.details = {} self.details['radius'] = ['[A]', None, None] self.details['scale'] = ['', None, None] self.details['thickness'] = ['[A]', None, None] self.details['core_sld'] = ['[1/A^(2)]', None, None] self.details['shell_sld'] = ['[1/A^(2)]', None, None] self.details['solvent_sld'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['M0_sld_shell'] = ['[1/A^(2)]', None, None] self.details['M_theta_shell'] = ['[deg]', None, None] self.details['M_phi_shell'] = ['[deg]', None, None] self.details['M0_sld_core'] = ['[1/A^(2)]', None, None] self.details['M_theta_core'] = ['[deg]', None, None] self.details['M_phi_core'] = ['[deg]', None, None] self.details['M0_sld_solv'] = ['[1/A^(2)]', None, None] self.details['M_theta_solv'] = ['[deg]', None, None] self.details['M_phi_solv'] = ['[deg]', None, None] self.details['Up_frac_i'] = ['[u/(u+d)]', None, None] self.details['Up_frac_f'] = ['[u/(u+d)]', None, None] self.details['Up_theta'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['thickness.width', 'radius.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['M0_sld_shell', 'M_theta_shell', 'M_phi_shell', 'M0_sld_core', 'M_theta_core', 'M_phi_core', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] ## parameters with magnetism self.magnetic_params = ['M0_sld_shell', 'M_theta_shell', 'M_phi_shell', 'M0_sld_core', 'M_theta_core', 'M_phi_core', 'M0_sld_solv', 'M_theta_solv', 'M_phi_solv', 'Up_frac_i', 'Up_frac_f', 'Up_theta'] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CoreShellModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreShellModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreShellModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreShellModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreShellModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCoreShellModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreShellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file