############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # This work benefited from DANSE software developed under NSF award DMR-0520547 # # Copyright 2008-2011, University of Tennessee ############################################################################## """ Provide functionality for a C extension model .. WARNING:: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\spheroidXT.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CCoreShellEllipsoidXTModel def create_CoreShellEllipsoidXTModel(): """ Create a model instance """ obj = CoreShellEllipsoidXTModel() # CCoreShellEllipsoidXTModel.__init__(obj) is called by # the CoreShellEllipsoidXTModel constructor return obj class CoreShellEllipsoidXTModel(CCoreShellEllipsoidXTModel, BaseComponent): """ Class that evaluates a CoreShellEllipsoidXTModel model. This file was auto-generated from src\sans\models\include\spheroidXT.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 0.05 * equat_core = 20.0 [A] * X_core = 3.0 * T_shell = 30.0 [A] * XpolarShell = 1.0 * sld_core = 2e-06 [1/A^(2)] * sld_shell = 1e-06 [1/A^(2)] * sld_solvent = 6.3e-06 [1/A^(2)] * background = 0.001 [1/cm] * axis_theta = 0.0 [deg] * axis_phi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCoreShellEllipsoidXTModel.__init__, (self,)) CCoreShellEllipsoidXTModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "CoreShellEllipsoidXTModel" ## Model description self.description = """ [SpheroidCoreShellModel] Calculates the form factor for an spheroid ellipsoid particle with a core_shell structure. The form factor is averaged over all possible orientations of the ellipsoid such that P(q) = scale*/Vol + bkg, where f is the single particle scattering amplitude. [Parameters]: equat_core = equatorial radius of core, polar_core = polar radius of core = equat_core*X_core, equat_shell = equatorial radius of outer surface = equat_core + T_shell, polar_shell = polar radius (revolution axis) of outer surface = equat_core*X_core + XpolarShell*T_shell sld_core = SLD_core sld_shell = SLD_shell sld_solvent = SLD_solvent background = Incoherent bkg scale =scale Note:It is the users' responsibility to ensure that shell radii are larger than core radii. oblate: polar radius < equatorial radius prolate : polar radius > equatorial radius - this new model will make this easier and polydispersity integrals more logical (as previously the shell could disappear). """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['equat_core'] = ['[A]', None, None] self.details['X_core'] = ['', None, None] self.details['T_shell'] = ['[A]', None, None] self.details['XpolarShell'] = ['', None, None] self.details['sld_core'] = ['[1/A^(2)]', None, None] self.details['sld_shell'] = ['[1/A^(2)]', None, None] self.details['sld_solvent'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[deg]', None, None] self.details['axis_phi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['equat_core.width', 'X_core.width', 'T_shell.width', 'Xpolarshell.width', 'axis_phi.width', 'axis_theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CoreShellEllipsoidXTModel, tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellEllipsoidXTModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreShellEllipsoidXTModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreShellEllipsoidXTModel.runXY(self, x) def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreShellEllipsoidXTModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreShellEllipsoidXTModel.calculate_ER(self) def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CCoreShellEllipsoidXTModel.calculate_VR(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreShellEllipsoidXTModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file