import time from data_util.calcthread import CalcThread import sys import numpy,math class Calc2D(CalcThread): """ Compute 2D model This calculation assumes a 2-fold symmetry of the model where points are computed for one half of the detector and I(qx, qy) = I(-qx, -qy) is assumed. """ def __init__(self, x, y, data,model,qmin, qmax,qstep, completefn = None, updatefn = None, yieldtime = 0.01, worktime = 0.01 ): CalcThread.__init__(self,completefn, updatefn, yieldtime, worktime) self.qmin= qmin self.qmax= qmax self.qstep= qstep # Reshape dimensions of x and y to call evalDistribution #self.x_array = numpy.reshape(x,[len(x),1]) #self.y_array = numpy.reshape(y,[1,len(y)]) self.x_array = numpy.reshape(x,[1,len(x)]) self.y_array = numpy.reshape(y,[len(y),1]) # Numpy array of dimensions 1 used for model.run method self.x= numpy.array(x) self.y= numpy.array(y) self.data= data # the model on to calculate self.model = model self.starttime = 0 def compute(self): """ Compute the data given a model function """ self.starttime = time.time() # Determine appropriate q range if self.qmin==None: self.qmin = 0 if self.qmax== None: if self.data !=None: newx= math.pow(max(math.fabs(self.data.xmax),math.fabs(self.data.xmin)),2) newy= math.pow(max(math.fabs(self.data.ymax),math.fabs(self.data.ymin)),2) self.qmax=math.sqrt( newx + newy ) # Define matrix where data will be plotted radius= numpy.sqrt( self.x_array**2 + self.y_array**2 ) index_data= (self.qmin<= radius) index_model = (self.qmin <= radius)&(radius<= self.qmax) output = numpy.zeros((len(self.x),len(self.y))) ## receive only list of 2 numpy array ## One must reshape to vertical and the other to horizontal value = self.model.evalDistribution([self.x_array,self.y_array] ) ## for data ignore the qmax if self.data == None: # Only qmin value will be consider for the detector output = value *index_data else: # The user can define qmin and qmax for the detector output = index_model*value elapsed = time.time()-self.starttime self.complete( image = output, data = self.data , model = self.model, elapsed = elapsed, qmin = self.qmin, qmax =self.qmax, qstep = self.qstep ) class Calc1D(CalcThread): """Compute 1D data""" def __init__(self, x, model, data=None, qmin=None, qmax=None, smearer=None, completefn = None, updatefn = None, yieldtime = 0.01, worktime = 0.01 ): CalcThread.__init__(self,completefn, updatefn, yieldtime, worktime) self.x = numpy.array(x) self.data= data self.qmin= qmin self.qmax= qmax self.model = model self.smearer= smearer self.starttime = 0 def compute(self): """ Compute model 1d value given qmin , qmax , x value """ self.starttime = time.time() output = numpy.zeros((len(self.x))) index= (self.qmin <= self.x)& (self.x <= self.qmax) ##smearer the ouput of the plot if self.smearer!=None: first_bin, last_bin = self.smearer.get_bin_range(self.qmin, self.qmax) output[first_bin:last_bin] = self.model.evalDistribution(self.x[first_bin:last_bin]) output = self.smearer(output, first_bin, last_bin) else: output[index] = self.model.evalDistribution(self.x[index]) elapsed = time.time()-self.starttime self.complete(x= self.x[index], y= output[index], elapsed=elapsed, model= self.model, data=self.data) class CalcCommandline: def __init__(self, n=20000): #print thread.get_ident() from sans.models.CylinderModel import CylinderModel model = CylinderModel() print model.runXY([0.01, 0.02]) qmax = 0.01 qstep = 0.0001 self.done = False x = numpy.arange(-qmax, qmax+qstep*0.01, qstep) y = numpy.arange(-qmax, qmax+qstep*0.01, qstep) calc_thread_2D = Calc2D(x, y, None, model.clone(),-qmax, qmax,qstep, completefn=self.complete, updatefn=self.update , yieldtime=0.0) calc_thread_2D.queue() calc_thread_2D.ready(2.5) while not self.done: time.sleep(1) def update(self,output): print "update" def complete(self, image, data, model, elapsed, qmin, qmax, qstep ): print "complete" self.done = True if __name__ == "__main__": CalcCommandline()