import time from data_util.calcthread import CalcThread import sys import numpy,math from DataLoader.smearing_2d import Smearer2D class Calc2D(CalcThread): """ Compute 2D model This calculation assumes a 2-fold symmetry of the model where points are computed for one half of the detector and I(qx, qy) = I(-qx, -qy) is assumed. """ def __init__(self, x, y, data,model,smearer,qmin, qmax,qstep, id , completefn = None, updatefn = None, yieldtime = 0.01, worktime = 0.01 ): CalcThread.__init__(self,completefn, updatefn, yieldtime, worktime) self.qmin= qmin self.qmax= qmax self.qstep= qstep self.x = x self.y = y self.data= data self.page_id = id # the model on to calculate self.model = model self.smearer = smearer#(data=self.data,model=self.model) self.starttime = 0 def compute(self): """ Compute the data given a model function """ self.starttime = time.time() # Determine appropriate q range if self.qmin==None: self.qmin = 0 if self.qmax== None: if self.data !=None: newx= math.pow(max(math.fabs(self.data.xmax),math.fabs(self.data.xmin)),2) newy= math.pow(max(math.fabs(self.data.ymax),math.fabs(self.data.ymin)),2) self.qmax=math.sqrt( newx + newy ) if self.data != None: self.I_data = self.data.data self.qx_data = self.data.qx_data self.qy_data = self.data.qy_data self.dqx_data = self.data.dqx_data self.dqy_data = self.data.dqy_data self.mask = self.data.mask else: xbin = numpy.linspace(start= -1*self.qmax, stop= self.qmax, num= self.qstep, endpoint=True ) ybin = numpy.linspace(start= -1*self.qmax, stop= self.qmax, num= self.qstep, endpoint=True ) new_xbin = numpy.tile(xbin, (len(ybin),1)) new_ybin = numpy.tile(ybin, (len(xbin),1)) new_ybin = new_ybin.swapaxes(0,1) new_xbin = new_xbin.flatten() new_ybin = new_ybin.flatten() self.qy_data = new_ybin self.qx_data = new_xbin # fake data self.I_data = numpy.ones(len(self.qx_data)) self.mask = numpy.ones(len(self.qx_data),dtype=bool) # Define matrix where data will be plotted radius= numpy.sqrt( self.qx_data*self.qx_data + self.qy_data*self.qy_data ) index_data= (self.qmin<= radius)&(self.mask) # For theory, qmax is based on 1d qmax # so that must be mulitified by sqrt(2) to get actual max for 2d index_model = ((self.qmin <= radius)&(radius<= self.qmax)) index_model = (index_model)&(self.mask) index_model = (index_model)&(numpy.isfinite(self.I_data)) if self.data ==None: # Only qmin value will be consider for the detector index_model = index_data if self.smearer != None: # Set smearer w/ data, model and index. fn = self.smearer fn.set_model(self.model) fn.set_index(index_model) # Get necessary data from self.data and set the data for smearing fn.get_data() # Calculate smeared Intensity (by Gaussian averaging): DataLoader/smearing2d/Smearer2D() value = fn.get_value() else: # calculation w/o smearing value = self.model.evalDistribution([self.qx_data[index_model],self.qy_data[index_model]]) output = numpy.zeros(len(self.qx_data)) # output default is None # This method is to distinguish between masked point(nan) and data point = 0. output = output/output # set value for self.mask==True, else still None to Plottools output[index_model] = value elapsed = time.time()-self.starttime self.complete(image=output, data=self.data, id=self.page_id, model=self.model, elapsed=elapsed, index=index_model, qmin=self.qmin, qmax=self.qmax, qstep=self.qstep) class Calc1D(CalcThread): """ Compute 1D data """ def __init__(self, x, model, id, data=None, qmin=None, qmax=None, smearer=None, completefn = None, updatefn = None, yieldtime = 0.01, worktime = 0.01 ): """ """ CalcThread.__init__(self,completefn, updatefn, yieldtime, worktime) self.x = numpy.array(x) self.data= data self.qmin= qmin self.qmax= qmax self.model = model self.page_id = id self.smearer= smearer self.starttime = 0 def compute(self): """ Compute model 1d value given qmin , qmax , x value """ self.starttime = time.time() output = numpy.zeros((len(self.x))) index= (self.qmin <= self.x)& (self.x <= self.qmax) ##smearer the ouput of the plot if self.smearer!=None: first_bin, last_bin = self.smearer.get_bin_range(self.qmin, self.qmax) output[first_bin:last_bin] = self.model.evalDistribution(self.x[first_bin:last_bin]) output = self.smearer(output, first_bin, last_bin) else: output[index] = self.model.evalDistribution(self.x[index]) elapsed = time.time() - self.starttime self.complete(x=self.x[index], y=output[index], id=self.page_id, elapsed=elapsed,index=index, model=self.model, data=self.data) def results(self): """ Send resuts of the computation """ return [self.out, self.index] """ Example: :: class CalcCommandline: def __init__(self, n=20000): #print thread.get_ident() from sans.models.CylinderModel import CylinderModel model = CylinderModel() print model.runXY([0.01, 0.02]) qmax = 0.01 qstep = 0.0001 self.done = False x = numpy.arange(-qmax, qmax+qstep*0.01, qstep) y = numpy.arange(-qmax, qmax+qstep*0.01, qstep) calc_thread_2D = Calc2D(x, y, None, model.clone(),None, -qmax, qmax,qstep, completefn=self.complete, updatefn=self.update , yieldtime=0.0) calc_thread_2D.queue() calc_thread_2D.ready(2.5) while not self.done: time.sleep(1) def update(self,output): print "update" def complete(self, image, data, model, elapsed, qmin, qmax,index, qstep ): print "complete" self.done = True if __name__ == "__main__": CalcCommandline() """