
Model Functions 

 Introduction 

 Shapes: SphereModel, BinaryHSModel, FuzzySphereModel, RaspBerryModel, 

CoreShellModel, Core2ndMomentModel, CoreMultiShellModel, VesicleModel, 

MultiShellModel,  OnionExpShellModel, SphericalSLDModel, LinearPearlsModel, 

PearlNecklaceModel , CylinderModel, CoreShellCylinderModel, 

CoreShellBicelleModel,HollowCylinderModel, FlexibleCylinderModel, 

FlexCylEllipXModel, StackedDisksModel, ParallelepipedModel, 

CSParallelepipedModel, EllipticalCylinderModel, BarBellModel, CappedCylinderModel, 

EllipsoidModel, CoreShellEllipsoidModel, TriaxialEllipsoidModel, LamellarModel, 

LamellarFFHGModel, LamellarPSModel, LamellarPSHGModel, 

LamellarPCrystalModel, SCCrystalModel, FCCrystalModel, BCCrystalModel. 

 Shape-Independent: AbsolutePower_Law, BEPolyelectrolyte, 

BroadPeakModel,CorrLength, DAB_Model, Debye, FractalModel, FractalCoreShell, 

GaussLorentzGel, Guinier, GuinierPorod, Lorentz, MassFractalModel, 

MassSurfaceFractal, PeakGaussModel, PeakLorentzModel, Poly_GaussCoil, 

PolyExclVolume, PorodModel, RPA10Model, StarPolymer, SurfaceFractalModel, 

Teubner Strey, TwoLorentzian, TwoPowerLaw, UnifiedPowerRg, LineModel, 

ReflectivityModel, ReflectivityIIModel, GelFitModel. 

 Customized Models: testmodel, testmodel_2, sum_p1_p2, sum_Ap1_1_Ap2, 

polynomial5, sph_bessel_jn. 

 Structure Factors: HardSphereStructure, SquareWellStructure, HayterMSAStructure, 

StickyHSStructure. 

 References 

1.    Introduction  

 Many of our models use the form factor calculations implemented in a c-library provided by the 

NIST Center for Neutron Research and thus some content and figures in this document are 

originated from or shared with the NIST Igor analysis package. 

2.    Shapes (Scattering Intensity Models) 

This software provides form factors for various particle shapes. After giving a mathematical 

definition of each model, we draw the list of parameters available to the user. Validation plots for 

each model are also presented. Instructions on how to use the software is available with the 

source code, available from SVN: 

https://sansviewproject.svn.sourceforge.net/svnroot/sansviewproject/ 



To easily compare to the scattering intensity measured in experiments, we normalize the form 

factors by the volume of the particle: 

            

with 

         

where P0(q) is the un-normalized form factor, ρ(r) is the scattering length density at a given 

point in space and the integration is done over the volume V of the scatterer. 

For systems without inter-particle interference, the form factors we provide can be related to the 

scattering intensity by the particle volume fraction: . 

Our so-called 1D scattering intensity functions provide P(q) for the case where the scatterer is 

randomly oriented. In that case, the scattering intensity only depends on the length of q. The 

intensity measured on the plane of the SANS detector will have an azimuthal symmetry around 

q=0. 

Our so-called 2D scattering intensity functions provide P(q, φ) for an oriented system as a 

function of a q-vector in the plane of the detector. We define the angle φ as the angle between 

the q vector and the horizontal (x) axis of the plane of the detector. 

2.1.                     Sphere Model 

This model provides the form factor, P(q), for a monodisperse spherical particle with uniform 

scattering length density. The form factor is normalized by the particle volume as described 

below. 

1.1.     Definition 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

 

where scale is a scale factor* volume fraction, V is the volume of the scatterer, r is the radius of 

the sphere, bkg is the background level and sldXXX is the scattering length density (SLD) of the 

scatterer or the solvent. 



Note that if your data is in absolute scale, the 'scale' should represent the volume fraction 

(unitless) if you have a good fit. If not, it should represent the volume fraction * a factor (by 

which your data might need to be rescaled). 

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

The returned value is scaled to units of [cm-1] and the parameters of the sphere model are the 

following: 

Parameter name Units Default value 

scale None 1 

radius Å 60 

sldSph Å -2 2.0e-6 

sldSolv Å -2 1.0e-6 

background cm-1 0 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

2.1.     Validation of the sphere model 

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 1 shows a comparison of the output of our 

model and the output of the NIST software. 



 

  

Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the 

NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=60 Å, 

Contrast=1e-6 Å -2, and Background=0.01 cm -1. 

2.2.                     BinaryHSModel 

This model (binary hard sphere model) provides the scattering intensity, for binary mixture of 

spheres including hard sphere interaction between those particles. Using Percus-Yevick closure, 

the calculation is an exact multi-component solution: 

 

where Sij are the partial structure factors and fi are the scattering amplitudes of the particles. And 

the subscript 1 is for the smaller particle and 2 is for the larger. The number fraction of the larger 

particle, (x =  n2/(n1+n2), n = the number density) is internally calculated based on: 

. 

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 



The parameters of the binary hard sphere are the following (in the names, l (or ls) stands for 

larger spheres while s (or ss) for the smaller spheres): 

Parameter name Units Default value 

background cm-1 0.001 

l_radius Å 100.0 

ss_sld Å -2 0.0 

ls_sld Å -2 3e-6 

solvent_sld Å -2 6e-6 

s_radius Å 25.0 

vol_frac_ls Å 0.1 

vol_frac_ss Å 0.2 

 

Figure. 1D plot using the default values above (w/200 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

See the reference for details. 

REFERENCE 



N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692. 

[Errata found in Phys. Rev. 166 (1968) 934.] 

2.3.                     FuzzySphereModel 

 This model is to calculate the scattering from spherical particles with a "fuzzy" interface. 

1.1.     Definition 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

The returned value is scaled to units of [cm-1 sr-1], absolute scale. 

The scattering intensity I(q) is calculated as: 

 

where the amplitude A(q) is given as the typical sphere scattering convoluted with a Gaussian to 

get a gradual drop-off in the scattering length density: 

 

Here A2(q) is the form factor, P(q). The ‘scale’ is equivalent to the volume fraction of spheres, 

each of volume, V. Contrast (Δρ ) is the difference of scattering length densities of the sphere 

and the surrounding solvent. 

The poly-dispersion in radius and in fuzziness is provided. 

(direct from the reference) 

The "fuzziness" of the interface is defined by the parameter (sigma)fuzzy. The particle radius R 

represents the radius of the particle where the scattering length density profile decreased to 1/2 of 

the core density. The (sigma)fuzzy  is the width of the smeared particle surface: i.e., the standard 

deviation from the average height of the fuzzy interface. The inner regions of the microgel that 

display a higher density are described by the radial box profile extending to a radius of 

approximately Rbox ~ R - 2(sigma). the profile approaches zero as Rsans ~ R + 2(sigma). 

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector 

is defined as . 

REFERENCE 



M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 (2004) 7283-7292. 

TEST DATASET 

This example dataset is produced by running the FuzzySphereModel, using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 A-1 and the default values: 

Parameter name Units Default value 

scale None 1.0 

radius Å 60 

fuzziness Å 10 

sldSolv Å -2 3e-6 

sldSph Å -2 1e-6 

background cm-1 0.001 

 

Figure. 1D plot using the default values (w/200 data point). 

  

2.4. RaspBerryModel 

  

Calculates the form factor, P(q), for a "Raspberry-like" structure where there are smaller spheres 

at the surface of a larger sphere, such as the structure of a Pickering emulsion.  



1.1.     Definition 

The structure is: 

 

 

Ro = the radius of the large sphere 

Rp = the radius of the smaller sphere on the surface 

delta = the fractional penetration depth 

surface coverage = fractional coverage of the large sphere surface (0.9 max) 

 

 

The large and small spheres have their own SLD, as well as the solvent. The surface coverage 

term is a fractional coverage (maximum of approximately 0.9 for hexagonally packed spheres on 

a surface). Since not all of the small spheres are necessarily attached to the surface, the excess 

free (small) spheres scattering is also included in the calculation. The function calculated follows 

equations (8)-(12) of the reference below, and the equations are not reproduced here. 

 

The returned value is scaled to units of [cm-1]. No interparticle scattering is included in this 

model. 

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector 

is defined as . 

   REFERENCE 

Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle scattering model for 



Pickering emulsions and raspberry particles." Journal of Colloid and Interface Science (2010) 

vol. 343 (1) pp. 36-41. 

TEST DATASET 

This example dataset is produced by running the RaspBerryModel, using 2000 data points, qmin 

= 0.0001 Å-1,  qmax = 0.2 A-1 and the default values, where Ssph/Lsph stands for 

Smaller/Large sphere and surfrac_Ssph for the surface fraction of the smaller spheres. 

Parameter name Units Default value 

  delta_Ssph     0 

  radius_Lsph   Å   5000 

  radius_Ssph   Å   100 

  sld_Lsph   Å -2   -4e-07 

sld_Ssph Å -2 3.5e-6 

sld_solv Å -2 6.3e-6 

surfrac_Ssph   0.4 

volf_Lsph   0.05 

volf_Lsph   0.005 

background cm-1 0 



 

Figure. 1D plot using the values of /2000 data points. 

  

  

2.5.                     Core Shell (Sphere) Model 

This model provides the form factor, P(q), for a spherical particle with a core-shell structure. The 

form factor is normalized by the particle volume. 

1.1.     Definition 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

  

where scale is a scale factor, Vs is the volume of the outer shell, Vc is the volume of the core, rs 

is the radius of the shell, rc is the radius of the core, ρc is the scattering length density of the 



core, ρs is the scattering length density of the shell, ρsolv is the scattering length density of the 

solvent, and bkg is the background level. 

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

For P*S: The outer most radius (= radius + thickness) is used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied. 

The returned value is scaled to units of [cm-1] and the parameters of the core-shell sphere model 

are the following: 

Here, radius = the radius of the core and thickness = the thickness of the shell. 

Parameter name Units Default value 

scale None 1.0 

(core) radius Å 60 

thickness Å 10 

core_sld Å -2 1e-6 

shell_sld Å -2 2e-6 

solvent_sld Å -2 3e-6 

background cm-1 0.001 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

            

REFERENCE 

Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, (1955). 

2.1.     Validation of the core-shell sphere model 

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 1 shows a comparison of the output of our 

model and the output of the NIST software. 



 

Figure 7: Comparison of the DANSE scattering intensity for a core-shell sphere with the output 

of the NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=60 Å, 

Contrast=1e-6 Å -2, and Background=0.001 cm -1. 

2.6.                     Core2ndMomentModel 

This model describes the scattering from a layer of surfactant or polymer adsorbed on spherical 

particles under the conditions that (i) the particles (cores) are contrast-matched to the 

dispersion medium, (ii) S(Q)~1 (ie, the particle volume fraction is dilute), (iii) the particle 

radius is >> layer thickness (ie, the interface is locally flat), and (iv) scattering from excess 

unadsorbed adsorbate in the bulk medium is absent or has been corrected for. 

Unlike a core-shell model, this model does not assume any form for the density distribution of 

the adsorbed species normal to the interface (cf, a core-shell model which assumes the density 

distribution to be a homogeneous step-function). For comparison, if the thickness of a (core-shell 

like) step function distribution is t, the second moment, sigma = sqrt((t^2)/12). The sigma is the 

second moment about the mean of the density distribution (ie, the distance of the centre-of-mass 

of the distribution from the interface). 

1.1.     Definition 

The I0 is calculated in the following way (King, 2002): 

  

  



where scale is a scale factor, ρpoly is the sld of the polymer (or surfactant) layer, ρsolv is the sld 

of the solvent/medium and cores, phi_cores is the volume fraction of the core paraticles, and 

Gamma and delta are the adsorbed amount and the bulk density of the polymers respectively. 

The sigma is the second moment of the thickness distribution.  

  

Note that all parameters except the 'sigma' are correlated for fitting so that fitting those with 

more than one parameters will be generally failed.  And note that unlike other shape models, no 

volume normalization was applied to this model. 

The returned value is scaled to units of [cm-1] and the parameters are the following: 

Parameter name Units Default value 

scale None 1.0 

density_poly g/cm2 0.7 

radius_core Å 500 

ads_amount mg/m 2 1.9 

  second_moment   Å   23.0 

  volf_cores   None   0.14 

sld_poly Å -2 1.5e-6 

sld_solv Å -2 6.3e-6 

background cm-1 0.0 

            

REFERENCE 

S. King, P. Griffiths, J. Hone, and T. Cosgrove, "SANS from Adsorbed Polymer Lyaers", 

Macromol. Symp. 190, 33-42  (2002). 

  



 

2.7.                     CoreMultiShell(Sphere)Model 

This model provides the scattering from spherical core with from 1 up to 4 shell structures. It has 

a core of a specified radius, with four shells. The SLDs of the core and each shell are 

individually specified.  

1.1.     Definition 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

This model is a trivial extension of the CoreShell function to a larger number of shells. See the 

CoreShell function for a diagram and documentation. 

Be careful that the SLDs and scale can be highly correlated. Hold as many of these fixed as 

possible. 

The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q 

vector. 

For P*S: The outer most radius (= radius + 4 thicknesses) is used as the effective radius toward 

S(Q) if P(Q)*S(Q) is applied. 



The returned value is scaled to units of [cm-1] and the parameters of the CoreFourshell sphere 

model are the following: 

Here, rad_core = the radius of the core,  thick_shelli = the thickness of the shell i and sld_shelli = 

the SLD of the shell i. 

And the sld_core and the sld_solv are the SLD of the core and the solvent, respectively. 

Parameter name Units Default value 

scale None 1.0 

rad_core Å 60 

sld_core Å -2 6.4e-6 

sld_shell1 Å -2 1e-6 

sld_shell2 Å -2 2e-6 

sld_shell3 Å -2 3e-6 

sld_shell4 Å -2 4e-6 

sld_solv Å -2 6.4e-6 

thick_shell1 Å 10 

thick_shell2 Å 10 

thick_shell3 Å 10 

thick_shell4 Å 10 

background cm-1 0.001 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

            

REFERENCE 

See the CoreShell documentation.  

TEST DATASET 

This example dataset is produced by running the CoreMultiShellModel using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default values. 



 

Figure: 1D plot using the default values (w/200 data point). 

 The scattering length density profile for the default sld values (w/ 4 shells). 

 



Figure: SLD profile against the radius of the sphere for default SLDs. 

2.8.                     VesicleModel 

This model provides the form factor, P(q), for an unilamellar vesicle. The form factor is 

normalized by the volume of the shell. 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

  

where scale is a scale factor, Vshell is the volume of the shell, V1 is the volume of the core, V2 is 

the total volume, R1 is the radius of the core, r2 is the outer radius of the shell, ρ1 is the 

scattering length density of the core and the solvent, ρ2 is the scattering length density of the 

shell, and bkg is the background level. And J1 = (sinx - xcosx)/x2. The functional form is 

identical to a "typical" core-shell structure, except that the scattering is normalized by the volume 

that is contributing to the scattering, namely the volume of the shell alone. Also, the vesicle is 

best defined in terms of a core radius (= R1) and a shell thickness, t.   

 

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector  which is defined as . 

For P*S: The outer most radius (= radius + thickness) is used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied. 



The returned value is scaled to units of [cm-1] and the parameters of the vesicle model are the 

following: 

In the parameters, the ‘radius’ represents the core radius (R1) and the ‘thickness’ (R2 – R1) is the 

shell thickness. 

Parameter name Units Default value 

scale None 1.0 

radius Å 100 

thickness Å 30 

core_sld Å -2 6.3e-6 

shell_sld Å -2 0 

background cm-1 0.0 

 

Figure. 1D plot using the default values (w/200 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

REFERENCE 



Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, (1955). 

2.9.                     MultiShellModel 

This model provides the form factor, P(q), for a multi-lamellar vesicle with N shells where the 

core is filled with solvent and the shells are interleaved with layers of solvent. For N = 1, this 

return to the vesicle model (above). 

 

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 

For P*S: The outer most radius (= core_radius + n_pairs  * s_thickness  + (n_pairs -1) * 

w_thickness) is used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 

The returned value is scaled to units of [cm-1] and the parameters of the multi-shell model are 

the following: 

In the parameters, the ‘s_thickness’ is the shell thickness while the ‘w_thickness’ is the solvent 

thickness, and the n_pair is the number of shells. 

Parameter name Units Default value 

scale None 1.0 



core_radius Å 60.0 

n_pairs None 2.0 

core_sld Å -2 6.3e-6 

shell_sld Å -2 0.0 

background cm-1 0.0 

s_thickness Å 10 

w_thickness Å 10 

 

Figure. 1D plot using the default values (w/200 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

REFERENCE 

Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New Methods of 

Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed. R. Zana, M. Dekker, New York, 

1987. 

2.10.                     OnionExpShellModel 



   

This model provides the form factor, P(q), for a multi-shell sphere where the scattering length 

density (SLD) of the each shell is described by an exponential (linear, or flat-top) function. The 

form factor is normalized by the volume of the sphere where the SLD is not identical to the SLD 

of the solvent. We currently provide up to 9 shells with this model. 

The 1D scattering intensity is calculated in the following way: 

 

 

where, for a spherically symmetric particle with a particle density r [L.A.Feigin and 

D.I.Svergun, ‘Structure Analysis by Small-Angle X-Ray and Neutron Scattering’, Plenum Press, 

New York, 1987], 

 

so that 

 
  

 

 

Here we assumed that the SLDs of the core and solvent are constant against r. Now let’s consider 

the SLD of a shell, shelli, defineded by 



 

An example of a possible SLD profile is shown below where sld_in_shelli (in ) and thick_shelli 

(tshelli ) stand for the SLD of the inner side of the i’th shell and the thickness of the i’th shell in 

the equation above, respectively. 

For |A|>0, 

 

For A ~ 0 (eg., A = - 0.0001), this function converges to that of the linear SLD profile (ie, 

shelli(r) = A’(r - rshelli-1) /tshelli) + B’), so this case it is equivalent to 

 

 

 

 



For A = 0, the exponential function has no dependence on the radius (so that ‘sld_out_shell#’ 

(out) is ignored this case) and becomes flat. We set the constant to in for convenience, and 

thus the form factor contributed by the shells is 

 

 

In the equation, 

 

Finally, the form factor can be calculated by 

 

where 

 

  

  



 

  

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector  which is defined as . 

For P*S: The outer most radius is used as the effective radius toward S(Q) when P(Q)*S(Q) is 

applied. 

The returned value is scaled to units of [cm-1] and the parameters of this model are the 

following: 

In the parameters, the ‘rad_core’ represents the core radius (R1) and the ‘thick_shell1’ (R2 – R1) 

is the thickness of the shell1, etc. 

Note: Only No. of shells  = 1 is given below. 

Parameter name Units Default value 



A_shell1 None 1 

scale None 1.0 

rad_core Å 200 

thick_shell1 Å 50 

sld_core Å -2 1.0e-06 

sld_in_shell1 Å -2 1.7e-06 

sld_out_shell1 Å -2 2.0e-06 

sld_solv Å -2 6.4e-06 

background cm-1 0.0 

 

Figure. 1D plot using the default values (w/400 point). 



  

 Figure. SLD profile from the default values. 

REFERENCE 

L.A.Feigin and D.I.Svergun, ‘Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering’, Plenum Press, New York, 1987 

2.11.                     SphericalSLDModel 

   

Similarly to the OnionExpShellModel, this model provides the form factor, P(q), for a multi-

shell sphere, where the interface between the each neighboring shells can be described by one of 

the functions including error, power-law, and exponential functions. This model is to calculate 

the scattering intensity by building a continuous custom SLD profile against the radius of the 

particle. The SLD profile is composed of a flat core, a flat solvent, a number (up to 9 shells) of 

flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent) (See 

below). Unlike OnionExpShellModel (using an analytical integration), the interfacial layers are 

sub-divided and numerically integrated assuming each sub-layers are described by a line 

function. The number of the sub-layer can be given by users by setting the integer values of 

‘npts_inter#’ in GUI. The form factor is normalized by the total volume of the sphere. 

The 1D scattering intensity is calculated in the following way: 

 



 

where, for a spherically symmetric particle with a particle density r [L.A.Feigin and 

D.I.Svergun, ‘Structure Analysis by Small-Angle X-Ray and Neutron Scattering’, Plenum Press, 

New York, 1987], 

 

so that 

 

 

 

 

 

 

Here we assumed that the SLDs of the core and solvent are constant against r. The SLD at the 

interface between shells, inter_i, is calculated with a function chosen by an user, where the 

functions are: 



1)      Exp;    

 

2)      Power-Law; 

  

 

3)      Erf; 

 

  

  

Then the functions are normalized so that it varies between 0 and 1 and they are constrained such 

that the SLD is continuous at the boundaries of the interface as well as each sub-layers and thus 

the B and C are determined. 

Once the inter_i is found at the boundary of the sub-layer of the interface, we can find its 

contribution to the form factor P(q); 

 

 



 

where we assume that rho_inter_i (r) can be approximately linear within a sub-layer j. 

In the equation, 

 

Finally, the form factor can be calculated by 

 

where 

 

  

  



 

  

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector  which is defined as . 

For P*S: The outer most radius is used as the effective radius toward S(Q) when P(Q)*S(Q) is 

applied. 

The returned value is scaled to units of [cm-1] and the parameters of this model are the 

following: 

In the parameters, the ‘rad_core0’ represents the core radius (R1). 

Note: Only No. of shells  = 1 is given below. 

Parameter name Units Default value 

background cm-1 0.0 



npts_inter   35 

scale   1 

sld_solv Å -2 1e-006 

func_inter1   Erf 

nu_inter   2.5 

thick_inter1 Å 50 

sld_flat1 Å -2 4e-006 

thick_flat1 Å 100 

func_inter0   Erf 

nu_inter0   2.5 

rad_core0 Å 50 

sld_ core0 Å -2 2.07e-06 

thick_ core0 Å 50 

 

Figure. 1D plot using the default values (w/400 point). 



  

 Figure. SLD profile from the default values. 

REFERENCE 

L.A.Feigin and D.I.Svergun, ‘Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering’, Plenum Press, New York, 1987 

2.12. LinearPearlsModel 

This model provides the form factor for pearls linearly joined by short strings: N pearls 

(homogeneous spheres), the radius R and the string segment length (or edge separation) l (= A- 

2R)). The A is the center to center pearl separation distance. The thickness of each string is 

assumed to be negligable. 

  

 



1.1.     Definition 

  

The output of the scattering intensity function for the linearpearls model is given by (Dobrynin, 

1996): 

  

where the mass mp  is (sld(of a pearl) – sld(of solvent)) * (volume of the N pearls), V is the total 

volume. 

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

The returned value is scaled to units of [cm-1] and the parameters are the following: 

Parameter name Units Default value 

scale None 1.0 

radius Å 80.0 

edge_separation Å 350.0 

num_pearls (integer) 3 

sld_pearl Å -2 1e-6 

sld_solv Å -2 6.3e-6 

background cm-1 0.0 

  



 

REFERENCE 

A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Macromol. 29, 2974-2979, 1996. 

2.13.                     PearlNecklaceModel 

This model provides the form factor for a pearl necklace composed of two elements: N pearls 

(homogeneous spheres) freely jointed by M rods (like strings) (with a total mass Mw = M *mr + 

N * ms, the radius R and the string segment length (or edge separation) l (= A- 2R)). The A is the 

center to center pearl separation distance. 

  



 

1.1.     Definition 

The output of the scattering intensity function for the pearlnecklace model is given by 

(Schweins, 2004): 

  

where 

,   

, 

, 

 , 



, 

and 

. 

  

where the mass mi  is (sld(of i) – sld(of solvent)) * (volume of the N pearls/rods), V is the total 

volume of the necklace. 

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

The returned value is scaled to units of [cm-1] and the parameters are the following: 

Parameter name Units Default value 

scale None 1.0 

radius Å 80.0 

edge_separation Å 350.0 

num_pearls (integer) 3 

sld_pearl Å -2 1e-6 

sld_solv Å -2 6.3e-6 

sld_string Å -2 1e-6 

thick_string 

(=rod diameter) 

Å 2.5 

background cm-1 0.0 

  



 

REFERENCE 

R. Schweins and K. Huber, ‘Particle Scattering Factor of Pearl Necklace Chains’, Macromol. 

Symp., 211, 25-42, 2004. 

  

2.14.                     Cylinder Model 

This model provides the form factor for a right circular cylinder with uniform scattering length 

density. The form factor is normalized by the particle volume. 

1.1.     Definition 

The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 

1955): 

  

   



where α is the angle between the axis of the cylinder and the q-vector, V is the volume of the 

cylinder, L is the length of the cylinder, r is the radius of the cylinder, and Δρ (contrast) is the 

scattering length density difference between the scatterer and the solvent. J1 is the first order 

Bessel function. 

To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using 

two angles theta and phi. Those angles are defined on Figure 2. 

 

Figure 2a. Definition of the angles for oriented cylinders. 

 

Figure 2b. Examples of the angles for oriented cylinders against the detector plane. 



For P*S: The 2nd virial coefficient of the cylinder is calculate based on the radius and length 

values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 

The returned value is scaled to units of [cm-1] and the parameters of the cylinder model are the 

following: 

Parameter name Units Default value 

scale None 1.0 

radius Å 20.0 

length Å 400.0 

contrast Å -2 3.0e-6 

background cm-1 0.0 

cyl_theta degree 60 

cyl_phi degree 60 

The output of the 1D scattering intensity function for randomly oriented cylinders is then given 

by: 

         

The cyl_theta and cyl_phi parameter are not used for the 1D output. Our implementation of the 

scattering kernel and the 1D scattering intensity use the c-library from NIST. 

2.1.     Validation of the cylinder model 

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

In general, averaging over a distribution of orientations is done by evaluating the following: 

           

where p(θ,φ) is the probability distribution for the orientation and P0(q,α) is the scattering 

intensity for the fully oriented system. Since we have no other software to compare the 

implementation of the intensity for fully oriented cylinders, we can compare the result of 



averaging our 2D output using a uniform distribution p(θ,φ) = 1.0.  Figure 4 shows the result of 

such a cross-check. 

 

  

Figure 3: Comparison of the DANSE scattering intensity for a cylinder with the output of the 

NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=20 Å, 

Length=400 Å, Contrast=3e-6 Å -2, and Background=0.01 cm -1. 

  



 

  

Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D 

model and the intensity from the NIST SANS analysis software. The parameters used were: 

Scale=1.0, Radius=20 Å, Length=400 Å, Contrast=3e-6 Å -2, and Background=0.0 cm -1. 

  

2.15.                     Core-Shell Cylinder Model 

This model provides the form factor for a circular cylinder with a core-shell scattering length 

density profile. The form factor is normalized by the particle volume. 

1.1.     Definition 

The output of the 2D scattering intensity function for oriented core-shell cylinders is given by 

(Kline, 2006): 

  

  



where α is the angle between the axis of the cylinder and the q-vector, Vs is the volume of the 

outer shell, Vc is the volume of the core, L is the length of the core, r is the radius of the core, t is 

the thickness of the shell, ρc is the scattering length density of the core, ρs is the scattering length 

density of the shell, ρsolv is the scattering length density of the solvent, and bkg is the 

background level. The outer radius of the shell is given by r+t and the total length of the outer 

shell is given by L+2t. J1 is the first order Bessel function. 

 

To provide easy access to the orientation of the core-shell cylinder, we define the axis of the 

cylinder using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2 in Cylinder Model. 

For P*S: The 2nd virial coefficient of the solid cylinder is calculate based on the 

(radius+thickness) and 2(length +thickness) values, and used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied. 

The returned value is scaled to units of [cm-1] and the parameters of the core-shell cylinder 

model are the following: 

Parameter name Units Default value 

scale None 1.0 

radius Å 20.0 

thickness Å 10.0 

length Å 400.0 

core_sld Å -2 1e-6 

shell_sld Å -2 4e-6 

solvent_sld Å -2 1e-6 

background cm-1 0.0 



axis_theta degree 90 

axis_phi degree 0.0 

The output of the 1D scattering intensity function for randomly oriented cylinders is then given 

by the equation above. 

The axis_theta and axis_phi parameters are not used for the 1D output. Our implementation of 

the scattering kernel and the 1D scattering intensity use the c-library from NIST. 

2.1.     Validation of the core-shell cylinder model 

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 8 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

Averaging over a distribution of orientation is done by evaluating the equation above. Since we 

have no other software to compare the implementation of the intensity for fully oriented core-

shell cylinders, we can compare the result of averaging our 2D output using a uniform 

distribution p(θ,φ) = 1.0.  Figure 9 shows the result of such a cross-check. 

 

  

Figure 8: Comparison of the DANSE scattering intensity for a core-shell cylinder with the output 

of the NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius=20 Å, 

Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å -2, Shell_sld=4e-6 Å -2, Solvent_sld=1e-6 Å 

-2, and Background=0.01 cm -1. 



  

 

  

Figure 9: Comparison of the intensity for uniformly distributed core-shell cylinders calculated 

from our 2D model and the intensity from the NIST SANS analysis software. The parameters 

used were: Scale=1.0, Radius=20 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å -2, 

Shell_sld=4e-6 Å -2, Solvent_sld=1e-6 Å -2, and Background=0.0 cm -1. 

2.16.                     Core-Shell (Cylinder) Bicelle Model 

This model provides the form factor for a circular cylinder with a core-shell scattering length 

density profile. The form factor is normalized by the particle volume. This model is a more 

general case of core-shell cylinder model (see above and reference below) in that the parameters 

of the shell are separated into a face-shell and a rim-shell so that users can set different values of 

the thicknesses and slds.  

  

The returned value is scaled to units of [cm-1] and the parameters of the core-shell cylinder 

model are the following: 

Parameter name Units Default value 

scale None 1.0 

radius Å 20.0 

rim_thick Å 10.0 



face_thick Å 10.0 

length Å 400.0 

core_sld Å -2 1e-6 

rim_sld Å -2 4e-6 

face_sld Å -2 4e-6 

solvent_sld Å -2 1e-6 

background cm-1 0.0 

axis_theta degree 90 

axis_phi degree 0.0 

The output of the 1D scattering intensity function for randomly oriented cylinders is then given 

by the equation above. 

The axis_theta and axis_phi parameters are not used for the 1D output. Our implementation of 

the scattering kernel and the 1D scattering intensity use the c-library from NIST. 

  

 

Figure. 1D plot using the default values (w/200 data point). 



 REFERENCE 

Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering", Plenum Press, New York, (1987). 

2.17.                     HollowCylinderModel 

This model provides the form factor, P(q), for a monodisperse hollow right angle circular 

cylinder (tube) where the form factor is normalized by the volume of the tube: 

P(q) = scale*<f^2>/Vshell+background where the averaging < > id applied only for the 1D 

calculation.  The inside and outside of the hollow cylinder have the same SLD. 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

 

  

where scale is a scale factor, J1 is the 1st order Bessel function, J1 (x)= (sinx - xcosx)/x2. 

 



To provide easy access to the orientation of the core-shell cylinder, we define the axis of the 

cylinder using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2 in Cylinder Model. 

For P*S: The 2nd virial coefficient of the solid cylinder is calculate based on the (radius) and 

2(length) values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 

In the parameters, the ‘contrast’ represents SLD (shell) - SLD (solvent) and the radius = Rhell 

while core_radius = Rcore. 

  

Parameter name Units Default value 

scale None 1.0 

radius Å 30 

length Å 400 

core_radius Å 20 

sldCyl Å -2 6.3e-6 

sldSolv Å -2 5e-06 

background cm-1 0.01 

 

Figure. 1D plot using the default values (w/1000 data point). 



Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

REFERENCE 

Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering", Plenum Press, New York, (1987). 

2.18.                     FlexibleCylinderModel 

This model provides the form factor, P(q), for a flexible cylinder where the form factor is 

normalized by the volume of the cylinder: Inter-cylinder interactions are NOT included. P(q) = 

scale*<f^2>/V+background where the averaging < >  is applied over all orientation for 1D.  The 

2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which is 

defined as .  

 

The chain of contour length, L, (the total length) can be described a chain of some number of 

locally stiff segments of length lp. The persistence length,lp, is the length along the cylinder over 

which the flexible cylinder can be considered a rigid rod. The Kuhn length (b = 2*lp) is also used 

to describe the stiffness of a chain. The returned value is in units of [cm-1], on absolute scale. In 

the parameters, the sldCyl and sldSolv  represent SLD (chain/cylinder)  and SLD (solvent) 

respectively. 

  

  

Parameter name Units Default value 

scale None 1.0 

radius Å 20 

length Å 1000 

sldCyl Å -2 1e-06 



sldSolv Å -2 6.3e-06 

background cm-1 0.01 

kuhn_length Å 100 

 

Figure. 1D plot using the default values (w/1000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

From the reference, "Method 3 With Excluded Volume" is used. The model is a parametrization 

of simulations of a discrete representation of the worm-like chain model of Kratky and Porod 

applied in the pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 

details. 

REFERENCE 

Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible polymers 

with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Correction of the formula can be found in: 

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar Interactions in 

the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, August 2006. 

2.19.                     FlexCylEllipXModel 



Flexible Cylinder with Elliptical Cross-Section:  Calculates the form factor for a flexible 

cylinder with an elliptical cross section and a uniform scattering length density. The non-

negligible diameter of the cylinder is included by accounting for excluded volume interactions 

within the walk of a single cylinder. The form factor is normalized by the particle volume such 

that P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all possible orientations of the 

flexible cylinder. 

1.1.     Definition 

The function calculated is from the reference given below. From that paper, "Method 3 With 

Excluded Volume" is used. The model is a parameterization of simulations of a discrete 

representation of the worm-like chain model of Kratky and Porod applied in the pseudo-

continuous limit.  See equations (13, 26-27) in the original reference for the details. 

NOTE: there are several typos in the original reference that have been corrected by WRC. 

Details of the corrections are in the reference below. 

 - Equation (13): the term (1-w(QR)) should swap position with w(QR) 

 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and solved 

analytically. The results were converted to code. 

 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 

max(a3*b/sqrt(RgSquare),3) 

 - The scattering function is negative for a range of parameter values and q-values that are 

experimentally accessible. A correction function has been added to give the proper behavior. 

 

The chain of contour length, L, (the total length) can be described a chain of some number of 

locally stiff segments of length lp. The persistence length, lp, is the length along the cylinder 

over which the flexible cylinder can be considered a rigid rod. The Kuhn length (b) used in the 

model is also used to describe the stiffness of a chain, and is simply b = 2*lp. 



The cross section of the cylinder is elliptical, with minor radius a. The major radius is larger, so 

of course, the axis ratio (parameter 4) must be greater than one. Simple constraints should be 

applied during curve fitting to maintain this inequality. 

The returned value is in units of [cm-1], on absolute scale. 

The sldCyl  = SLD (chain), sldSolv = SLD (solvent). The ‘scale’, and the contrast are both 

multiplicative factors in the model and are perfectly correlated. One or both of these parameters 

must be held fixed during model fitting. 

If the ‘scale’ is set equal to the particle volume fraction, , the returned value is the scattered 

intensity per unit volume, I(q) = *P(q). However, no inter-particle interference effects are 

included in this calculation. 

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector 

is defined as . 

REFERENCE 

Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible polymers 

with and without excluded volume effects.” Macromolecules 29: 7602-7612. 

Corrections are in: 

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar Interactions in 

the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, August 2006. 

            

TEST DATASET 

This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data 

points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the default values below. 

Parameter name Units Default value 

axis_ratio   1.5 

background cm-1 0.0001 

Kuhn_length Å 100 

(Contour) length Å 1e+3 

radius Å 20.0 

scale   1.0 



sldCyl Å -2 1e-6 

sldSolv Å -2 6.3e-6 

 

Figure. 1D plot using the default values (w/200 data points). 

2.20.                StackedDisksModel  

This model provides the form factor, P(q), for stacked discs (tactoids) with a core/layer structure 

where the form factor is normalized by the volume of the cylinder.  Assuming the next neighbor 

distance (d-spacing) in a stack of parallel discs obeys a Gaussian distribution, a structure factor 

S(q) proposed by Kratky and Porod in 1949 is used in this function. Note that the resolution 

smearing calculation uses 76 Gauss quadrature points to properly smear the model since the 

function is HIGHLY oscillatory, especially around the q-values that correspond to the repeat 

distance of the layers. 

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 

  

         



 

The returned value is in units of [cm-1 sr-1], on absolute scale. 

The scattering intensity I(q) is: 

 

where the contrast, 

 

N is the number of discs per unit volume,  is the angle between the axis of the disc and q, and 

Vt and Vc are the total volume and the core volume of a single disc, respectively. 

 

  

  

where d = thickness of the layer (layer_thick), 2h= core thickness (core_thick),  and R = radius 

of the disc (radius). 

 

where n = the total number of the disc stacked (n_stacking), D=the next neighbor center to cent 

distance (d-spacing), and D = the Gaussian standard deviation of the d-spacing (sigma_d). 

To provide easy access to the orientation of the stackeddisks, we define the axis of the cylinder 

using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined on 

Figure 2 of CylinderModel. 



 For P*S: The 2nd virial coefficient of the solid cylinder is calculate based on the (radius) and 

length = n_stacking*(core_thick +2*layer_thick) values, and used as the effective radius toward 

S(Q) when P(Q)*S(Q) is applied. 

Parameter name Units Default value 

background cm-1 0.001 

core_sld Å -2 4e-006 

core_thick Å 10 

layer_sld Å -2 0 

layer_thick Å 15 

n_stacking   1 

radius Å 3e+003 

scale   0.01 

sigma_d   0 

solvent_sld Å -2 5e-006 

 

Figure. 1D plot using the default values (w/1000 data point). 



 

Figure. Examples of the angles for oriented stackeddisks against the detector plane. 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, 1955. 

Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949. 

Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering", Clarendon, Oxford, 1994. 

2.21.                ParallelepipedModel 

This model provides the form factor, P(q), for a rectangular cylinder (below) where the form 

factor is normalized by the volume of the cylinder. P(q) = scale*<f^2>/V+background where the 

volume V= ABC and the averaging < >  is applied over all orientation for 1D.   

  



 

The side of the solid must be satisfied the condition of A<B 

By this definition, assuming 

a = A/B<1; b=B/B=1; c=C/B>1, the form factor, 

 

The contrast is defined as 

 

The scattering intensity per unit volume is returned in the unit of [cm-1];  I(q) = P(q). 

For P*S: The 2nd virial coefficient of the solid cylinder is calculate based on the averaged 

effective radius (= sqrt(short_a*short_b/pi)) and length( = long_c) values, and used as the 

effective radius toward S(Q) when P(Q)*S(Q) is applied. 

To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder 

using two angles θ , φ and. Similarly to the case of the cylinder, those angles, θ  and φ, are 

defined on Figure 2 of CylinderModel. The angle is the rotational angle around its own long_c 

axis against the q plane. For example, = 0 when the short_b axis is parallel to the x-axis of the 

detector. 



 

Figure. Definition of angles for 2D. 

 

Figure. Examples of the angles for oriented pp against the detector plane. 

Parameter name Units Default value 

background cm-1 0.0 

contrast Å -2 5e-006 

long_c Å 400 

short_a Å -2 35 

short_b Å 75 

scale   1 



 

Figure. 1D plot using the default values (w/1000 data point). 

         Validation of the parallelepiped 2D model 

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for the averaging, 76, 180, 76 points are taken over the angles of theta, phi, and psi 

respectively). 

 



Figure. Comparison between 1D and averaged 2D. 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. 

Equations (1), (13-14). (in German) 

2.22.                CSParallelepipedModel 

Calculates the form factor for a rectangular solid with a core-shell structure. The thickness and 

the scattering length density of the shell or "rim" can be different on all three (pairs) of faces.  

The form factor is normalized by the particle volume such that P(q) = scale*<f^2>/Vol + bkg, 

where < > is an average over all possible orientations of the rectangular solid. An instrument 

resolution smeared version is also provided. 

The function calculated is the form factor of the rectangular solid below. The core of the solid is 

defined by the dimensions ABC such that A < B < C.  

  

There are rectangular "slabs" of thickness tA that add to the A dimension (on the BC faces). 

There are similar slabs on the AC (=tB) and AB (=tC) faces. The projection in the AB plane is 

then: 



 

The volume of the solid is: 

 

meaning that there are "gaps" at the corners of the solid. 

The intensity calculated follows the parallelepiped model, with the core-shell intensity being 

calculated as the square of the sum of the amplitudes of the core and shell, in the same manner as 

a core-shell sphere. 

For the calculation of the form factor to be valid, the sides of the solid MUST be chosen such 

that A < B < C. If this inequality in not satisfied, the model will not report an error, and the 

calculation will not be correct. 

FITTING NOTES: 

If the scale is set equal to the particle volume fraction, f, the returned value is the scattered 

intensity per unit volume, I(q) = f*P(q). However, no interparticle interference effects are 

included in this calculation. 

There are many parameters in this model. Hold as many fixed as possible with known values, or 

you will certainly end up at a solution that is unphysical. 

Constraints must be applied during fitting to ensure that the inequality A < B < C  is not violated. 

The calculation will not report an error, but the results will not be correct. 

The returned value is in units of [cm-1], on absolute scale. 



For P*S: The 2nd virial coefficient of this CSPP is calculate based on the averaged effective 

radius (= sqrt((short_a+2*rim_a)*(short_b+2*rim_b)/pi)) and length( = long_c+2*rim_c) values, 

and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 

To provide easy access to the orientation of the CSparallelepiped, we define the axis of the 

cylinder using two angles θ , φ and. Similarly to the case of the cylinder, those angles, θ  and 

φ, are defined on Figure 2 of CylinderModel. The angle is the rotational angle around its own 

long_c axis against the q plane. For example, = 0 when the short_b axis is parallel to the x-

axis of the detector. 

 

Figure. Definition of angles for 2D. 

 

Figure. Examples of the angles for oriented cspp against the detector plane. 

            TEST DATASET 



This example dataset is produced by running the Macro Plot_CSParallelepiped(), using 100 data 

points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the below default values.  

Parameter name Units Default value 

background cm-1 0.06 

sld_pcore Å -2 1e-006 

sld_rimA Å -2 2e-006 

sld_rimB Å -2 4e-006 

sld_rimC Å -2 2e-006 

sld_solv Å -2 6e-006 

rimA Å 10 

rimB Å 10 

rimC Å 10 

longC Å 400 

shortA Å 35 

midB Å 75 

scale   1 

 

Figure. 1D plot using the default values (w/256 data points). 



  

 

Figure. 2D plot using the default values (w/(256X265) data points). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

            REFERENCE 

see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. 

Equations (1), (13-14). (yes, it's in German)  

2.23.                Elliptical Cylinder Model 

This function calculates the scattering from an oriented elliptical cylinder. 

For 2D (orientated system): 

The angles theta and phi define the orientation of the axis of the cylinder. The angle psi is 

defined as the orientation of the major axis of the ellipse with respect to the vector Q. A gaussian 

poydispersity can be added to any of the orientation angles, and also for the minor radius and the 

ratio of the ellipse radii. 



 

Figure. a= r_minor and = r_ratio (i.e., r_major/r_minor). 

The function calculated is: 

  

with the functions: 

  

 

  

and the angle psi is defined as the orientation of the major axis of the ellipse with respect to the 

vector Q. 

For 1D (no preferred orientation): 

The form factor is averaged over all possible orientation before normalized by the particle 

volume: P(q) = scale*<f^2>/V . 

The returned value is scaled to units of [cm-1]. 

To provide easy access to the orientation of the elliptical, we define the axis of the cylinder using 

two angles θ , φ and. Similarly to the case of the cylinder, those angles, θ  and φ, are defined 

on Figure 2 of CylinderModel. The angle is the rotational angle around its own long_c axis 

against the q plane. For example, = 0 when the r_minor axis is parallel to the x-axis of the 

detector. 



All angle parameters are valid and given only for 2D calculation (Oriented system). 

 

Figure. Definition of angels for 2D. 

 

Figure. Examples of the angles for oriented elliptical cylinders  

against the detector plane. 

For P*S: The 2nd virial coefficient of the solid cylinder is calculate based on the averaged radius 

(=sqrt(r_minor^2*r_ratio))  and length values, and used as the effective radius toward S(Q) when 

P(Q)*S(Q) is applied. 

Parameter name Units Default value 

scale None 1.0 



r_minor Å 20.0 

r_ratio Å 1.5 

length Å 400.0 

sldCyl Å -2 4e-6 

sldSolv Å -2 1e-006 

background   0 

 

Figure. 1D plot using the default values (w/1000 data point). 

         Validation of the elliptical cylinder 2D model 

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and psi 

respectively). 



 

Figure. Comparison between 1D and averaged 2D. 

  

In the 2D average, more binning in the angle phi is necessary to get the proper result. The 

following figure shows the results of the averaging by varying the number of bin over angles. 

 

Figure. The intensities averaged from 2D over different number  

of points of binning of angles. 

REFERENCE 



L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering”, Plenum, New York, (1987). 

2.24.                BarBell(/DumBell)Model 

Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the 

DumBellModel when the length of the cylinder, L, is set to zero). That is, a sphereocylinder with 

spherical end caps that have a radius larger than that of the cylinder and the center of the end cap 

radius lies outside of the cylinder All dimensions of the barbell are considered to be 

monodisperse. See the diagram for the details of the geometry and restrictions on parameter 

values.  

1.1.     Definition 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The barbell geometry is defined as: 

 

r is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end 

cap radius R >= r and by definition for this geometry h > 0,  h is then defined by r and R as: 

h = sqrt(R^2 - r^2). 

The scattering intensity I(q) is calculated as: 

 

where the amplitude A(q) is given as: 

  



 

  

The < > brackets denote an average of the structure over all orientations. <A^2(q)> is then the 

form factor, P(q). The scale factor is equivalent to the volume fraction of cylinders, each of 

volume, V. Contrast is the difference of scattering length densities of the cylinder and the 

surrounding solvent. 

The volume of the barbell is: 

 

and its radius of gyration: 

 

The necessary conditions of R >= r is not enforced in the model. It is up to you to restrict this 

during analysis. 

            REFERENCES 

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. 

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata) 

            TEST DATASET 

This example dataset is produced by running the Macro PlotBarbell(), using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default values. 

Parameter name Units Default value 



scale None 1.0 

len_bar Å 400.0 

rad_bar Å 20.0 

rad_bell Å 40.0 

sld_barbell Å -2 1.0e-006 

sld_solv Å -2 6.3e-006 

background   0 

 

Figure. 1D plot using the default values (w/256 data point). 

For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. At the 

theta = 45 deg and phi =0 deg with default values for other parameters, 



 

Figure. 2D plot (w/(256X265) data points). 

2.25.                CappedCylinder(/ConvexLens)Model 

Calculates the scattering from a cylinder with spherical section end-caps(This model simply 

becomes the ConvexLensModel when the length of the cylinder L = 0.  That is, a 

sphereocylinder with end caps that have a radius larger than that of the cylinder and the center of 

the end cap radius lies within the cylinder. See the diagram for the details of the geometry and 

restrictions on parameter values. 

  

1.1.     Definition 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The Capped Cylinder geometry is defined as: 



 

r is the radius of the cylinder. All other parameters are as defined in the diagram. Since the end 

cap radius R >= r and by definition for this geometry h < 0,  h is then defined by r and R as: 

h = -1*sqrt(R^2 - r^2). 

The scattering intensity I(q) is calculated as: 

 

where the amplitude A(q) is given as: 

 

The < > brackets denote an average of the structure over all orientations. <A^2(q)> is then the 

form factor, P(q). The scale factor is equivalent to the volume fraction of cylinders, each of 

volume, V. Contrast is the difference of scattering length densities of the cylinder and the 

surrounding solvent. 

The volume of the Capped Cylinder is: 

(with h as a positive value here) 

 



and its radius of gyration: 

 

The necessary conditions of R >= r is not enforced in the model. It is up to you to restrict this 

during analysis. 

            REFERENCES 

H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. 

H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata) 

            TEST DATASET 

This example dataset is produced by running the Macro CappedCylinder(), using 200 data 

points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default values. 

Parameter name Units Default value 

scale None 1.0 

len_cyl Å 400.0 

rad_cap Å 40.0 

rad_cyl Å 20.0 

sld_capcyl Å -2 1.0e-006 

sld_solv Å -2 6.3e-006 

background   0 



 

Figure. 1D plot using the default values (w/256 data point). 

For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. At the 

theta = 45 deg and phi =0 deg with default values for other parameters, 

 

Figure. 2D plot (w/(256X265) data points). 



2.26.                Ellipsoid Model 

This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform 

scattering length density. The form factor is normalized by the particle volume. 

1.1.     Definition 

The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 

1987): 

   

    

     

where α is the angle between the axis of the ellipsoid and the q-vector, V is the volume of the 

ellipsoid, Ra is the radius along the rotation axis of the ellipsoid, Rb is the radius perpendicular 

to the rotation axis of the ellipsoid and Δρ (contrast) is the scattering length density difference 

between the scatterer and the solvent. 

To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the 

ellipsoid using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2. For the ellipsoid, θ is the angle between the rotation axis and the z-axis. 

For P*S: The 2nd virial coefficient of the solid ellipsoid is calculate based on the radius_a and 

radius_b values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. 

The returned value is scaled to units of [cm-1] and the parameters of the ellipsoid model are the 

following: 

Parameter name Units Default value 

scale None 1.0 

radius_a (polar) Å 20.0 

radius_b (equatorial) Å 400.0 

sldEll Å -2 4.0e-6 

sldSolv Å -2 1.0e-6 

background cm-1 0.0 



axis_theta degree 90 

axis_phi degree 0.0 

 

The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given 

by the equation above. 

The axis_theta and axis_phi parameters are not used for the 1D output. Our implementation of 

the scattering kernel and the 1D scattering intensity use the c-library from NIST. 

 



Figure. Examples of the angles for oriented ellipsoid  

against the detector plane. 

2.1.     Validation of the ellipsoid model 

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 5 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

Averaging over a distribution of orientation is done by evaluating the equation above. Since we 

have no other software to compare the implementation of the intensity for fully oriented 

ellipsoids, we can compare the result of averaging our 2D output using a uniform distribution 

p(θ,φ) = 1.0.  Figure 6 shows the result of such a cross-check. 

  

The discrepancy above q=0.3 Å -1 is due to the way the form factors are calculated in the c-

library provided by NIST. A numerical integration has to be performed to obtain P(q) for 

randomly oriented particles. The NIST software performs that integration with a 76-point 

Gaussian quadrature rule, which will become imprecise at high q where the amplitude varies 

quickly as a function of q. The DANSE result shown has been obtained by summing over 501 

equidistant points in α. Our result was found to be stable over the range of q shown for a number 

of points higher than 500. 

 

Figure 5: Comparison of the DANSE scattering intensity for an ellipsoid with the output of the 

NIST SANS analysis software. The parameters were set to: Scale=1.0, Radius_a=20 Å, 

Radius_b=400 Å, 



Contrast=3e-6 Å -2, and Background=0.01 cm -1. 

 

  

Figure 6: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D 

model and the intensity from the NIST SANS analysis software. The parameters used were: 

Scale=1.0, Radius_a=20 Å, Radius_b=400 Å, Contrast=3e-6 Å -2, and Background=0.0 cm -1. 

  

2.27.                CoreShellEllipsoidModel  

This model provides the form factor, P(q), for a core shell ellipsoid (below) where the form 

factor is normalized by the volume of the cylinder. P(q) = scale*<f^2>/V+background where the 

volume V= 4pi/3*rmaj*rmin2 and the averaging < >  is applied over all orientation for 1D.   

   

The returned value is in units of [cm-1], on absolute scale. 



The form factor calculated is: 

  

 

  

To provide easy access to the orientation of the coreshell ellipsoid, we define the axis of the solid 

ellipsoid using two angles θ , φ. Similarly to the case of the cylinder, those angles, θ  and φ, are 

defined on Figure 2 of CylinderModel. 

The contrast is defined as SLD(core) – SLD(shell) or SLD(shell – solvent). In the parameters, 

equat_core = equatorial core radius, polar_core = polar core radius, equat_shell = rmin (or 

equatorial outer radius), and polar_shell = = rmaj (or polar outer radius). 

For P*S: The 2nd virial coefficient of the solid ellipsoid is calculate based on the radius_a (= 

polar_shell) and radius_b (= equat_shell) values, and used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied. 

  

Parameter name Units Default value 

background cm-1 0.001 

equat_core Å 200 

equat_shell Å 250 

sld_solvent Å -2 6e-006 

ploar_shell Å 30 

ploar_core Å 20 

scale   1 

sld_core Å -2 2e-006 

sld_shell Å -2 1e-006 



 

Figure. 1D plot using the default values (w/1000 data point). 

  

 

Figure. Examples of the angles for oriented coreshellellipsoid against the detector plane where a 

=polar axis. 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 



REFERENCE 

Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461. 

Berr, S.  J. Phys. Chem., 1987, 91, 4760. 

2.28.                TriaxialEllipsoidModel 

This model provides the form factor, P(q), for an ellipsoid (below) where all three axes are of 

different lengths, i.e.,  Ra =< Rb =< Rc (Note that users should maintains this inequality for the 

all calculations).  P(q) = scale*<f^2>/V+background where the volume V= 4pi/3*Ra*Rb*Rc, 

and the averaging < >  is applied over all orientation for 1D.   

   

   

The returned value is in units of [cm-1], on absolute scale. 

The form factor calculated is: 

 

To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the 

cylinder using the angles θ , φ and. Similarly to the case of the cylinder, those angles, θ  and φ, 

are defined on Figure 2 of CylinderModel. The angle is the rotational angle around its own 

semi_axisC axis against the q plane. For example, = 0 when the semi_axisA axis is parallel to 

the x-axis of the detector. 



The radius of gyration for this system is Rg2 = (Ra2*Rb2*Rc2)/5.  The contrast is defined as 

SLD(ellipsoid) – SLD(solvent). In the parameters, semi_axisA = Ra (or minor equatorial radius), 

semi_axisB = Rb (or major equatorial radius), and semi_axisC = Rc (or polar radius of the 

ellipsoid). 

For P*S: The 2nd virial coefficient of the solid ellipsoid is calculate based on the radius_a 

(=semi_axisC) and radius_b (=sqrt(semi_axisA* semi_axisB))  values, and used as the effective 

radius toward S(Q) when P(Q)*S(Q) is applied. 

  

  

Parameter name Units Default value 

background cm-1 0.0 

semi_axisA Å 35 

semi_axisB Å 100 

semi_axisC Å 400 

scale   1 

sldEll Å -2 1.0e-006 

sldSolv Å -2 6.3e-006 

 



Figure. 1D plot using the default values (w/1000 data point). 

         Validation of the triaxialellipsoid 2D model 

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and psi 

respectively). 

 

Figure. Comparison between 1D and averaged 2D. 

 

Figure. Examples of the angles for oriented ellipsoid against the detector plane. 



Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering”, Plenum, New York, 1987. 

2.29.                LamellarModel 

This model provides the scattering intensity, I(q), for a lyotropic lamellar phase where a uniform 

SLD and random distribution in solution are assumed.  The ploydispersion in the bilayer 

thickness can be applied from the GUI. 

The scattering intensity I(q) is: 

 

The form factor is, 

 

where  = bilayer thickness. 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  

The returned value is in units of [cm-1], on absolute scale. In the parameters, sld_bi = SLD of the 

bilayer, sld_sol = SLD of the solvent, and bi_thick = the thickness of the bilayer. 

  

Parameter name Units Default value 

background cm-1 0.0 

sld_bi Å -2 1e-006 

bi_thick Å 50 

sld_sol Å -2 6e-006 



scale   1 

 

Figure. 1D plot using the default values (w/1000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

2.30.                LamellarFFHGModel 

This model provides the scattering intensity, I(q), for a lyotropic lamellar phase where a random 

distribution in solution are assumed.  The SLD of the head region is taken to be different from 

the SLD of the tail region. 

The scattering intensity I(q) is: 

 

The form factor is, 



 

where  = tail length (or t_length),  = heasd thickness (or h_thickness) , H = SLD 

(headgroup) - SLD(solvent), and T = SLD (tail) - SLD(headgroup). 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  

The returned value is in units of [cm-1], on absolute scale. In the parameters, sld_tail = SLD of 

the tail group, and sld_head = SLD of the head group. 

  

Parameter name Units Default value 

background cm-1 0.0 

sld_head Å -2 3e-006 

scale   1 

sld_solvent Å -2 6e-006 

h_thickness Å 10 

t_length Å 15 

sld_tail Å -2 0 



 

Figure. 1D plot using the default values (w/1000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

2.31.                LamellarPSModel 

This model provides the scattering intensity (form factor * structure factor), I(q), for a 

lyotropic lamellar phase where a random distribution in solution are assumed. 

The scattering intensity I(q) is: 

 

The form factor is 

 



and the structure is 

 

where 

  

 

  

Here d= (repeat) spacing,  = bilayer thickness, the contrast  = SLD (headgroup) - 

SLD(solvent), K=smectic bending elasticity, B=compression modulus, and N = number of 

lamellar plates (n_plates). 

Note: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the 

model are incorrect. And due to the complication of the model function, users are responsible to 

make sure that all the assumptions are handled accurately: see the original reference (below) for 

more details. 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

The returned value is in units of [cm-1], on absolute scale. 

  

Parameter name Units Default value 

background cm-1 0.0 

contrast Å -2 5e-006 

scale   1 

delta Å 30 

n_plates   20 



spacing Å 400 

caille Å -2 0.1 

 

Figure. 1D plot using the default values (w/6000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

2.32.                LamellarPSHGModel 

This model provides the scattering intensity (form factor * structure factor), I(q), for a 

lyotropic lamellar phase where a random distribution in solution are assumed.  The SLD of the 

head region is taken to be different from the SLD of the tail region. 

The scattering intensity I(q) is: 

 



The form factor is, 

 

The structure factor is 

 

where 

  

 

  

where  = tail length (or t_length),  = heasd thickness (or h_thickness) , H = SLD 

(headgroup) - SLD(solvent), and T = SLD (tail) - SLD(headgroup). Here d= (repeat) spacing, 

K=smectic bending elasticity, B=compression modulus, and N = number of lamellar plates 

(n_plates). 

Note: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the 

model are incorrect. And due to the complication of the model function, users are responsible to 

make sure that all the assumptions are handled accurately: see the original reference (below) for 

more details. 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  

The returned value is in units of [cm-1], on absolute scale. In the parameters, sld_tail = SLD of 

the tail group, sld_head = SLD of the head group, and sld_solvent = SLD of the solvent. 

  



Parameter name Units Default value 

background cm-1 0.001 

sld_head Å -2 2e-006 

scale   1 

sld_solvent Å -2 6e-006 

deltaH Å 2 

deltaT Å 10 

sld_tail Å -2 0 

n_plates   30 

spacing Å 40 

caille Å -2 0.001 

 

Figure. 1D plot using the default values (w/6000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 



            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

2.33.                     LamellarPCrystalModel 

Lamella ParaCrystal Model: Calculates the scattering from a stack of repeating lamellar 

structures. The stacks of lamellae (infinite in lateral dimension) are treated as a paracrystal to 

account for the repeating spacing. The repeat distance is further characterized by a Gaussian 

polydispersity. This model can be used for large multilamellar vesicles. 

The scattering intensity I(q) is calculated as: 

 

The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer 

of thickness t. 

 

Here, the scale factor is used instead of the mass per area of the bilayer (G). The scale factor is 

the volume fraction of the material in the bilayer, not the total excluded volume of the 

paracrystal. ZN(q) describes the interference effects for aggregates consisting of more than one 

bilayer. The equations used are (3-5) from the Bergstrom reference below. 

Non-integer numbers of stacks are calculated as a linear combination of the lower and higher 

values: 

 

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 

The parameters of the model are the following (Nlayers= no. of layers, pd_spacing= 

polydispersity of spacing…): 

Parameter name Units Default value 

background cm-1 0 

scale   1 

Nlayers   20 

pd_spacing   0.2 



sld_layer Å -2 1e-6 

sld_solvent Å -2 6.34e-6 

spacing Å 250 

thickness Å 33 

 

Figure. 1D plot using the default values above (w/20000 data point). 

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

See the reference for details. 

REFERENCE 

M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J. Phys. Chem. B, 103 (1999) 

9888-9897. 

2.34.                SC(Simple Cubic Para-)CrystalModel 

Calculates the scattering from a simple cubic lattice with paracrystalline distortion. Thermal 

vibrations are considered to be negligible, and the size of the paracrystal is infinitely large. 

Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian distribution. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 



The scattering intensity I(q) is calculated as: 

 

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, V(lattice) 

is a volume correction for the crystal structure, P(q) is the form factor of the sphere (normalized) 

and Z(q) is the paracrystalline structure factor for a simple cubic structure. Equation (16) of the 

1987 reference is used to calculate Z(q), using equations (13)-(15) from the 1987 paper for Z1, 

Z2, and Z3. 

The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles 

of radius R and nearest neighbor separation D is: 

 

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of 

Z(q): 

 

where g is a fractional distortion based on the nearest neighbor distance. 

The simple cubic lattice is: 

 

For a crystal, diffraction peaks appear at reduced q-values givn by: 

 



where for a simple cubic lattice any h, k, l are allowed and none are forbidden. Thus the peak 

positions correspond to (just the first 5): 

 

NOTE: The calculation of Z(q) is a double numerical integral that must be carried out with a 

high density of points to properly capture the sharp peaks of the paracrystalline scattering. So be 

warned that the calculation is SLOW. Go get some coffee. Fitting of any experimental data must 

be resolution smeared for any meaningful fit. This makes a triple integral. Very, very slow. Go 

get lunch. 

REFERENCES 

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper) 

Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to FCC and 

BCC lattice structure calculation) 

  

Parameter name Units Default value 

background cm-1 0 

dnn Å 220 

scale   1 

sldSolv Å -2 6.3e-006 

radius Å 40 

sld_Sph Å -2 3e-006 

d_factor   0.06 

            TEST DATASET 

This example dataset is produced using 200 data points, qmin = 0.01 Å-1,  qmax = 0.1 Å-1 and 

the above default values. 



 

Figure. 1D plot in the linear scale using the default values (w/200 data point). 

 The 2D (Anisotropic model) is based on the reference (above) which I(q)  is approximated for 

1d scattering. Thus the scattering pattern for 2D may not be accurate. Note that we are not 

responsible for any incorrectness of the 2D model computation. 

 



  

  

  

  

 

Figure. 2D plot using the default values (w/200X200 pixels). 

2.35.                FC(Face Centered Cubic Para-)CrystalModel 

Calculates the scattering from a face-centered cubic lattice with paracrystalline distortion. 

Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely 

large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian 

distribution.  

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated as: 

 

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, V(lattice) 

is a volume correction for the crystal structure, P(q) is the form factor of the sphere (normalized) 

and Z(q) is the paracrystalline structure factor for a face-centered cubic structure. Equation (1) of 



the 1990 reference is used to calculate Z(q), using equations (23)-(25) from the 1987 paper for 

Z1, Z2, and Z3. 

The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of 

particles of radius R and nearest neighbor separation D is: 

 

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of 

Z(q): 

 

where g is a fractional distortion based on the nearest neighbor distance. 

The face-centered cubic lattice is: 

 

For a crystal, diffraction peaks appear at reduced q-values givn by: 

 

where for a face-centered cubic lattice  h, k, l all odd or all even are allowed and reflections 

where h, k, l are mixed odd/even are forbidden. Thus the peak positions correspond to (just the 

first 5): 

 



NOTE: The calculation of Z(q) is a double numerical integral that must be carried out with a 

high density of points to properly capture the sharp peaks of the paracrystalline scattering. So be 

warned that the calculation is SLOW. Go get some coffee. Fitting of any experimental data must 

be resolution smeared for any meaningful fit. This makes a triple integral. Very, very slow. Go 

get lunch. 

            REFERENCES 

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper) 

Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to FCC and 

BCC lattice structure calculation) 

            

  

Parameter name Units Default value 

background cm-1 0 

dnn Å 220 

scale   1 

sldSolv Å -2 6.3e-006 

radius Å 40 

sld_Sph Å -2 3e-006 

d_factor   0.06 

TEST DATASET 

This example dataset is produced using 200 data points, qmin = 0.01 Å-1,  qmax = 0.1 Å-1 and 

the above default values. 



 

Figure. 1D plot in the linear scale using the default values (w/200 data point). 

 The 2D (Anisotropic model) is based on the reference (above) in which I(q)  is approximated for 

1d scattering. Thus the scattering pattern for 2D may not be accurate. Note that we are not 

responsible for any incorrectness of the 2D model computation. 

 



  

  

  

  

 

Figure. 2D plot using the default values (w/200X200 pixels). 

2.36.                BC(Body Centered Cubic Para-)CrystalModel 

Calculates the scattering from a body-centered cubic lattice with paracrystalline distortion. 

Thermal vibrations are considered to be negligible, and the size of the paracrystal is infinitely 

large. Paracrystalline distortion is assumed to be isotropic and characterized by a Gaussian 

distribution.The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated as: 

 

where scale is the volume fraction of spheres, Vp is the volume of the primary particle, V(lattice) 

is a volume correction for the crystal structure, P(q) is the form factor of the sphere (normalized) 

and Z(q) is the paracrystalline structure factor for a body-centered cubic structure. Equation (1) 



of the 1990 reference is used to calculate Z(q), using equations (29)-(31) from the 1987 paper for 

Z1, Z2, and Z3. 

The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of 

particles of radius R and nearest neighbor separation D is: 

 

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of 

Z(q): 

 

where g is a fractional distortion based on the nearest neighbor distance. 

The body-centered cubic lattice is: 

 

For a crystal, diffraction peaks appear at reduced q-values givn by: 

 

where for a body-centered cubic lattice, only reflections where (h+k+l) = even are allowed and 

reflections where (h+k+l) = odd are forbidden. Thus the peak positions correspond to (just the 

first 5): 

 



NOTE: The calculation of Z(q) is a double numerical integral that must be carried out with a 

high density of points to properly capture the sharp peaks of the paracrystalline scattering. So be 

warned that the calculation is SLOW. Go get some coffee. Fitting of any experimental data must 

be resolution smeared for any meaningful fit. This makes a triple integral. Very, very slow. Go 

get lunch. 

            REFERENCES 

Hideki Matsuoka et. al. Physical Review B,  36 (1987) 1754-1765.  (Original Paper) 

Hideki Matsuoka et. al. Physical Review B,  41 (1990) 3854 -3856.  (Corrections to FCC and 

BCC lattice structure calculation) 

            

  

Parameter name Units Default value 

background cm-1 0 

dnn Å 220 

scale   1 

sldSolv Å -2 6.3e-006 

radius Å 40 

sld_Sph Å -2 3e-006 

d_factor   0.06 

TEST DATASET 

This example dataset is produced using 200 data points, qmin = 0.001 Å-1,  qmax = 0.1 Å-1 and 

the above default values. 



 

Figure. 1D plot in the linear scale using the default values (w/200 data point). 

 The 2D (Anisotropic model) is based on the reference (1987) in which I(q)  is approximated for 

1d scattering. Thus the scattering pattern for 2D may not be accurate. Note that we are not 

responsible for any incorrectness of the 2D model computation. 

 

  

  



  

  

 

Figure. 2D plot using the default values (w/200X200 pixels). 

3.    Shape-Independent Models  

The following are models used for shape-independent SANS analysis. 

3.1.                      Debye (Model) 

The Debye model is a form factor for a linear polymer chain. In addition to the radius of 

gyration, Rg, a scale factor "scale", and a constant background term are included in the 

calculation. 

 

  

  



For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale None 1.0 

rg Å 50.0 

background cm-1 0.0 

 

Figure. 1D plot using the default values (w/200 data point). 

  

Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in Polymer Science", 

Oxford University Press, New York (2000). 

3.2.                      BroadPeak Model 

Calculate an empirical functional form for SANS data characterized by a broad scattering 

peak. Many SANS spectra are characterized by a broad peak even though they are from 

amorphous soft materials. The d-spacing corresponding to the broad peak is a characteristic 

distance between the scattering inhomogeneities (such as in lamellar, cylindrical, or spherical 

morphologies or for bicontinuous structures). 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated by:  



 

Here the peak position is related to the d-spacing as Q0 = 2pi/d0. Soft systems that show a SANS 

peak include copolymers, polyelectrolytes, multiphase systems, layered structures, etc. 

  

  

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale_l (= C)   10 

scale_p (=A)   1e-05 

length_l (=) Å 50 

q_peak (= Q0) Å-1 0.1 

exponent_l (=n)   2 

exponent_p (=m)   3 

Background (=B) cm-1 0.1 



 

Figure. 1D plot using the default values (w/200 data point). 

  

Reference: None. 

3.3.                      CorrLength (CorrelationLengthModel) 

Calculate an empirical functional form for SANS data characterized by a low-Q signal and a 

high-Q signal 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated by:  

 

The first term describes Porod scattering from clusters (exponent = n) and the second term is a 

Lorentzian function describing scattering from polymer chains (exponent = m). This second term 

characterizes the polymer/solvent interactions and therefore the thermodynamics. The two 

multiplicative factors A and C, the incoherent background B and the two exponents n and m are 

used as fitting parameters. The final parameter (xi) is a correlation length for the polymer chains. 

Note that when m = 2, this functional form becomes the familiar Lorentzian function.  

  



For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale_l (= C)   10 

scale_p (=A)   1e-06 

length_l (=) Å 50 

exponent_l (=n)   2 

exponent_p (=m)   3 

Background (=B) cm-1 0.1 

 

Figure. 1D plot using the default values (w/500 data points). 

  

REFERENCE 

B. Hammouda, D.L. Ho and S.R. Kline, “Insight into Clustering in Poly(ethylene oxide) 

Solutions”, Macromolecules 37, 6932-6937 (2004). 

3.4.                      (Ornstein-Zernicke) Lorentz (Model) 



The Ornstein-Zernicke model is defined by: 

  

 

  

The parameter L is referred to as the screening length. 

  

For 2D plot, the wave transfer is defined as . 

  

  

Parameter name Units Default value 

scale None 1.0 

length Å 50.0 

background cm-1 0.0 

 

 Figure. 1D plot using the default values (w/200 data point). 

3.5.                      DAB (Debye-Anderson-Brumberger)_Model 



  

Calculates the scattering from a randomly distributed, two-phase system based on the Debye-

Anderson-Brumberger (DAB) model for such systems. The two-phase system is 

characterized by a single length scale, the correlation length, which is a measure of the 

average spacing between regions of phase 1 and phase 2. The model also assumes smooth 

interfaces between the phases and hence exhibits Porod behavior (I ~ Q-4) at large Q 

(Q*correlation length >> 1). 

  

 

   

The parameter L is referred to as the correlation length. 

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale None 1.0 

length Å 50.0 

background cm-1 0.0 

 



 Figure. 1D plot using the default values (w/200 data point). 

References: 

Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid. II. The 

Correlation Function and its Application", J. Appl. Phys. 28 (6), 679 (1957). 

  

Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys. 20, 518 (1949). 

3.6.                       Absolute Power_Law  

This model describes a power law with background. 

 

   

Note the minus sign in front of the exponent. 

  

Parameter name Units Default value 

Scale None 1.0 

m None 4 

Background cm-1 0.0 

 



Figure. 1D plot using the default values (w/200 data point). 

3.7.                      Teubner Strey (Model) 

This function calculates the scattered intensity of a two-component system using the 

Teubner-Strey model. 

  

 

  

  

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale None 0.1 

c1 None -30.0 

c2 None 5000.0 

background cm-1 0.0 

 



Figure. 1D plot using the default values (w/200 data point). 

References: 

Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987). 

  

Schubert, K-V., Strey, R., Kline, S. R. and E. W. Kaler, J. Chem. Phys., 101, 5343 

(1994). 

3.8.                       FractalModel 

Calculates the scattering from fractal-like aggregates built from spherical building blocks 

following the Texiera reference. The value returned is in cm-1. 

  

 

  

The scale parameter is the volume fraction of the building blocks, R0 is the radius of the 

building block, Df is the fractal dimension, ξ is the correlation length, ρsolvent is the 

scattering length density of the solvent, and ρblock is the scattering length density of the 

building blocks. 

The polydispersion in radius is provided. 

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale None 0.05 



radius Å 5.0 

fractal_dim None 2 

corr_length Å 100.0 

block_sld Å-2 2e-6 

solvent_sld Å-2 6e-6 

background cm-1 0.0 

 

Figure. 1D plot using the default values (w/200 data point). 

  

  

References: 

J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785 

  

3.9.                     MassFractalModel 

Calculates the scattering from fractal-like aggregates based on the Mildner reference 

(below).  

 
 



  

  

  

The R is the radius of the building block, Dm is the mass fractal dimension, ξ is the 

correlation (or cutt-off)  length, ρsolvent is the scattering length density of the solvent, and 

ρparticle is the scattering length density of particles. 

Note:  The mass fractal dimension is valid for 1<mass_dim<6. 

  

Parameter name Units Default value 

scale None 1 

radius Å 10.0 

mass_dim None 1.9 

co_length Å 100.0 

background   0.0 



 

Figure. 1D plot 

  

  

References: 

D. Mildner, and P. Hall,  J. Phys. D.: Appl. Phys.,  19, 1535-1545  (1986), Equation(9). 

  

  

3.10.                     SurfaceFractalModel 

Calculates the scattering  based on the Mildner reference (below).  

 
 



  

  

  

The R is the radius of the building block, Ds is the surface fractal dimension, ξ is the 

correlation (or cutt-off)  length, ρsolvent is the scattering length density of the solvent, and 

ρparticle is the scattering length density of particles. 

 Note:  The surface fractal dimension is valid for 1<surface_dim<3.  Also it is valid in a 

limited q range (see the reference for details). 

  

Parameter name Units Default value 

scale None 1 

radius Å 10.0 

surface_dim None 2.0 

co_length Å 500.0 

background   0.0 



 

Figure. 1D plot 

  

  

References: 

D. Mildner, and P. Hall,  J. Phys. D.: Appl. Phys.,  19, 1535-1545  (1986), Equation(13). 

  

  

3.11.                     MassSurfaceFractal 

    A number of natural and commercial processes form high-surface area materials as a result of 

the vapour-phase aggregation of primary particles. Examples of such materials include soots, 

aerosols, and ‘fume’ or pyrogenic silicas. These are all characterised by cluster mass 

distributions (sometimes also cluster size distributions) and internal surfaces that are fractal in 

nature.   The scattering from such materials displays two distinct breaks in log-log 

representation, corresponding to the radius-of-gyration of the primary particles, rg, and the 

radius-of-gyration of the clusters (aggregates), Rg. Between these boundaries the scattering 

follows a power law related to the mass fractal dimension, Dm, whilst above the high-Q 



boundary the scattering follows a power law related to the surface fractal dimension of the 

primary particles, Ds. 

The scattered intensity I(Q) is then calculated using a modified Ornstein-Zernicke 

equation: 

 
 

  

  

  

The Rg is for the cluster, rg is for the primary, Ds is the surface fractal dimension, Dm is the 

mass fractal dimension, ρsolvent is the scattering length density of the solvent, and ρp is the 

scattering length density of particles. 

 Note:  The surface and mass fractal dimensions are valid for 0<surface_dim<6, 

0<mass_dim<6, and (surface_mass+mass_dim)<6.  

  

Parameter name Units Default value 

scale None 1 

primary_rg Å 4000.0 

  cluster_rg   Å  86.7 

surface_dim None 2.3 

  mass_dim  None  1.8 

background   0.0 



 

Figure. 1D plot 

  

  

References: 

P. Schmidt, J Appl. Cryst., 24, 414-435  (1991), Equation(19). 

Hurd, Schaefer, Martin, Phys. Rev. A, 35, 2361-2364 (1987), Equation(2). 

  

  

3.12.                       FractalCoreShell(Model) 

Calculates the scattering from a fractal structure with a primary building block of core-shell 

spheres. 

 



 

 

The formfactor P(q) is CoreShellModel with bkg = 0,  

, 

 

while the fractal structure factor S(q);  

 

 

 

where Df = frac_dim, ξ = cor_length, rc = (core) radius, and scale = volfraction.  

The fractal structure is as documented in the fractal model. This model could find use for 

aggregates of coated particles, or aggregates of vesicles. The polydispersity computation of 

radius and thickness is provided. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

See each of these individual models for full documentation.  

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

volfraction   0.05 

frac_dim   2 

thickness Å 5.0 

raidus  Å 20.0 

cor_length Å 100.0 

core_sld Å-2 3.5e-6 

shell_sld Å-2 1e-6 



solvent_sld Å-2 6.35e-6 

background cm-1 0.0 

 

Figure. 1D plot using the default values (w/500 data points). 

  

  

References: 

See the PolyCore and Fractal documentation.   

3.13.                       GaussLorentzGel(Model) 

Calculates the scattering from a gel structure, typically a physical network. It is modeled as a 

sum of a low-q exponential decay plus a lorentzian at higher q-values. It is generally 

applicable to gel structures. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated as (eqn 5 from the reference): 

 

  



Uppercase Zeta is the static correlations in the gel, which can be attributed to the "frozen-in" 

crosslinks of some gels. Lowercase zeta is the dynamic correlation length, which can be 

attributed to the fluctuating polymer chain between crosslinks. IG(0) and IL(0) are the 

scaling factors for each of these structures. Your physical system may be different, so think 

about the interpretation of these parameters. 

Note that the peaked structure at higher q values (from Figure 2 of the reference below) is not 

reproduced by the model. Peaks can be introduced into the model by summing this model 

with the PeakGauss Model function. 

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

dyn_colength(=Dynamic 

correlation length) 

Å 20.0 

scale_g(=Gauss scale 

factor) 

  100 

scale_l(=Lorentzian 

scale factor) 

  50 

stat_colength(=Static 

correlation Z) 

Å 100.0 

background cm-1 0.0 

 



Figure. 1D plot using the default values (w/500 data points). 

  

  

REFERENCE: 

G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42 (2001) 2907-

2913. 

3.14.                       BEPolyelectrolyte Model 

Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived 

by Borue and Erukhimovich. The value returned is in cm-1. 

  

 

  

K is a contrast factor of the polymer, Lb is the Bjerrum length, h is the virial parameter, b is 

the monomer length, Cs is the concentration of monovalent salt, α is the ionization degree, 

Ca is the polymer molar concentration, and background is the incoherent background. 

For 2D plot, the wave transfer is defined as . 

Parameter name Units Default value 

K Barns = 10-24 cm2 10 

Lb Å 7.1 

h Å-3 12 

b Å 10 

Cs Mol/L 0 

alpha None 0.05 



Ca Mol/L 0.7 

background cm-1 0.0 

References: 

Borue, V. Y., Erukhimovich, I. Y. Macromolecules 21, 3240 (1988). 

Joanny, J.-F., Leibler, L. Journal de Physique 51, 545 (1990). 

Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de Physique II France  

3, 573 (1993). 

Raphaël, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990). 

  

3.15.                      Guinier (Model) 

A Guinier analysis is done by linearizing the data at low q by plotting it as log(I) versus Q2. 

The Guinier radius Rg can be obtained by fitting the following model: 

 

  

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale cm-1 1.0 

Rg Å 0.1 

  

3.16.                      GuinierPorod (Model) 

Calculates the scattering for a generalized Guinier/power law object. This is an empirical 

model that can be used to determine the size and dimensionality of scattering objects. 



The returned value is P(Q) as written in equation (1), plus the incoherent background term. 

The result is in the units of [cm-1sr-1], absolute scale. 

A Guinier-Porod empirical model can be used to fit SAS data from asymmetric objects such 

as rods or platelets. It also applies to intermediate shapes between spheres and rod or between 

rods and platelets. The following functional form is used:  

   (1) 

  

This is based on the generalized Guinier law for such elongated objects [2]. For 3D globular 

objects (such as spheres), s = 0 and one recovers the standard Guinier formula. For 2D 

symmetry (such as for rods) s = 1 and for 1D symmetry (such as for lamellae or platelets) s = 

2. A dimensionality parameter 3-s is defined, and is 3 for spherical objects, 2 for rods, and 1 

for plates. 

Enforcing the continuity of the Guinier and Porod functions and their derivatives yields:  

 

and 

 

  

Note that the radius of gyration for a sphere of radius R is given by Rg = R sqrt(3/5) , 

 that for the cross section of an randomly oriented cylinder of radius R is given by  Rg = R / 

sqrt(2). 

The cross section of a randomly oriented lamella of thickness T is given by Rg = T / sqrt(12). 

The intensity given by Eq. 1 is the calculated result, and is plotted below for the default 

parameter values. 



      REFERENCE 

[1] Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, (1955). 

[2] Glatter, O.; Kratky, O., “Small-Angle X-Ray Scattering”, Academic Press (1982). Check 

out Chapter 4 on Data Treatment, pages 155-156.  

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

Scale(=Guinier scale, G) cm-1 1.0 

rg Å 100 

dim(=Dimensional 

Variable, s) 

  1 

m(=Porod exponent)   3 

background   0.1 

  

 

Figure. 1D plot using the default values (w/500 data points). 



  

  

3.17.                      PorodModel 

A Porod analysis is done by linearizing the data at high q by plotting it as log(I) versus 

log(Q). In the high q region we can fit the following model: 

 

  

C is the scale factor and  Sv is the specific surface area of the sample and Δρ is the contrast 

factor. 

The background term is added for data analysis. 

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale Å-4 0.1 

background cm-1 0 

3.18.                      PeakGaussModel 

Model describes a Gaussian shaped peak including a flat background, 

  

 

  

with the peak having height of I0 centered at qpk having standard deviation of B.  The fwhm 

is 2.354*B.   

Parameters I0, B, qpk, and BGD can all be adjusted during fitting. 

      REFERENCE: None 



For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale cm-1 100 

q0 Å 0.05 

B   0.005 

background   1 

  

  

 

Figure. 1D plot using the default values (w/500 data points). 

  

3.19.                      PeakLorentzModel 

Model describes a Lorentzian shaped peak including a flat background, 

  



 

  

with the peak having height of I0 centered at qpk having a hwhm (half-width-half-maximum) 

of B.  

The parameters I0, B, qpk, and BGD can all be adjusted during fitting. 

      REFERENCE: None 

For 2D plot, the wave transfer is defined as . 

  

Parameter name Units Default value 

scale cm-1 100 

q0 Å 0.05 

B   0.005 

background   1 

  

  



 

Figure. 1D plot using the default values (w/500 data points). 

3.20.       Poly_GaussCoil (Model) 

Polydisperse Gaussian Coil: Calculate an empirical functional form for scattering from a 

polydisperse polymer chain ina good solvent. The polymer is polydisperse with a Schulz-

Zimm polydispersity of the molecular weight distribution.  

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

 

where the dimensionless chain dimension is: 

 

and the polydispersion is 

. 

The scattering intensity I(q) is calculated as: 



The polydispersion in ‘rg’ is provided. 

  

For 2D plot, the wave transfer is defined as . 

TEST DATASET 

 This example dataset is produced by running the Poly_GaussCoil, using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 Å-1   and the default values below. 

Parameter name Units Default value 

Scale None 1.0 

rg Å 60.0 

poly_m Mw/Mn 2 

background cm-1 0.001 

  

 

Figure. 1D plot using the default values (w/200 data point). 

  

Reference: 

Glatter & Kratky - pg.404. 



J.S. Higgins, and H.C. Benoit, “Polymers and Neutron Scattering”, Oxford Science 

Publications (1996). 

3.21.       PolymerExclVolume (Model) 

Calculates the scattering from polymers with excluded volume effects. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The returned value is P(Q) as written in equation (2), plus the incoherent background term. 

The result is in the units of [cm-1sr-1], absolute scale. 

A model describing polymer chain conformations with excluded volume was introduced to 

describe the conformation of polymer chains, and has been used as a template for describing 

mass fractals. The form factor for that model (Benoit, 1957) was originally presented in the 

following integral form: 

     (1) 

Here n is the excluded volume parameter which is related to the Porod exponent m as  = 

1/m, a is the polymer chain statistical segment length and n is the degree of polymerization. 

This integral was later put into an “almost” analytical form (Hammouda, 1993) as follows: 

    (2) 

Here, (x,U) is the incomplete gamma function which is a built-in function in computer 

libraries. 

 

The variable U is given in terms of the scattering variable Q as: 

 

The radius of gyration squared has been defined as: 

 



Note that this model describing polymer chains with excluded volume applies only in the mass 

fractal range ( 5/3 <= m <= 3) and does not apply to surface fractals ( 3 < m <= 4). It does not 

reproduce the rigid rod limit (m = 1) because it assumes chain flexibility from the outset.  It may 

cover a portion of the semiflexible chain range ( 1 < m < 5/3). 

The low-Q expansion yields the Guinier form and the high-Q expansion yields the Porod form 

which is given by: 

 

Here (x) = (x,inf) is the gamma function. The asymptotic limit is dominated by the first term: 

 

The special case when  = 0.5 (or m = 1/ = 2) corresponds to Gaussian chains for which the 

form factor is given by the familiar Debye function. 

 

The form factor given by Eq. 2 is the calculated result, and is plotted below for the default 

parameter values. 

REFERENCE 

Benoit, H., Comptes Rendus (1957). 245, 2244-2247. 

Hammouda, B., “SANS from Homogeneous Polymer Mixtures  A Unified Overview”, Advances 

in Polym. Sci. (1993), 106, 87-133. 

For 2D plot, the wave transfer is defined as . 

TEST DATASET 

 This example dataset is produced, using 200 data points, qmin = 0.001 Å-1,  qmax = 0.2 Å-

1   and the default values below. 

Parameter name Units Default value 

Scale None 1.0 

rg Å 60.0 



m(=Porod exponent)   3 

background cm-1 0.0 

  

 

Figure. 1D plot using the default values (w/500 data points). 

  

3.22.                  RPA10Model 

Calculates the macroscopic scattering intensity (units of cm^-1) for a multicomponent 

homogeneous mixture of polymers using the Random Phase Approximation. This general 

formalism contains 10 specific cases: 

Case 0: C/D Binary mixture of homopolymers 

Case 1: C-D Diblock copolymer 

Case 2: B/C/D Ternary mixture of homopolymers 

Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D 

Case 4: B-C-D Triblock copolymer 

Case 5: A/B/C/D Quaternary mixture of homopolymers 



Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D 

Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D 

Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D 

Case 9: A-B-C-D Four-block copolymer 

Note: the case numbers are different from the IGOR/NIST SANS package. 

  

Only one case can be used at any one time.  Plotting a different case will overwrite the 

original parameter waves. 

The returned value is scaled to units of [cm-1]. 

Component D is assumed to be the "background" component (all contrasts are calculated 

with respect to component D). 

Scattering contrast for a C/D blend= {SLD (component C) - SLD (component D)}2 

Depending on what case is used, the number of fitting parameters varies. These represent the 

segment lengths (ba, bb, etc) and the Chi parameters (Kab, Kac, etc). The last one of these is 

a scaling factor to be held constant equal to unity. 

The input parameters are the degree of polymerization, the volume fractions for each 

component the specific volumes and the neutron scattering length densities. 

This RPA (mean field) formalism applies only when the multicomponent polymer mixture is 

in the homogeneous mixed-phase region. 

      REFERENCE 

A.Z. Akcasu, R. Klein and B. Hammouda, Macromolecules 26, 4136 (1993) 

  

Fitting parameters for Case0 Model 

Parameter name Units Default value 

background cm-1 0.0 

scale   1 

bc(=Seg. Length bc)   5 



bd(=Seg. Length bd)   5 

Kcd(Chi Param. Kcd)   -0.0004 

  

  

Fixed parameters for Case0 Model 

Parameter name Units Default value 

Lc(= Scatter. Length_c)   1e-12 

Ld(= Scatter. Length_d)   0 

Nc(=Deg.Polym.c)   1000 

Nd(=Deg.Polym.d)   1000 

Phic(=Vol. fraction of c)   0.25 

Phid(=Vol. fraction of d)   0.25 

vc(=Spec. vol. of c)   100 

vd(=Spec. vol. of d)   100 

  

  



 

Figure. 1D plot using the default values (w/500 data points). 

  

3.23.                 TwoLorentzian(Model) 

Calculate an empirical functional form for SANS data characterized by a two Lorentzian 

functions. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

The scattering intensity I(q) is calculated by:  

  

  

A = Lorentzian scale #1 

C = Lorentzian scale #2  

where ‘scale’ is the peak height centered at q0, and B refers to the standard deviation of the 

function. 

The background term is added for data analysis. 



For 2D plot, the wave transfer is defined as . 

Default input parameter values 

Parameter name Units Default value 

scale_1(=A)   10 

scale_2(=C)   1 

1ength_1 

(=Correlation length1) 

Å 100 

1ength_2(=Correlation 

length2) 

Å 10 

exponent_1(=n)   3 

exponent_2(=m)   2 

Background(=B) cm-1 0.1 

  

  

 

Figure. 1D plot using the default values (w/500 data points). 

  



REFERENCE: None 

3.24.                 TwoPowerLaw(Model) 

Calculate an empirical functional form for SANS data characterized by two power laws. 

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

  

The scattering intensity I(q) is calculated by: 

  

  

qc is the location of the crossover from one slope to the other. The scaling A, sets the overall 

intensity of the lower Q power law region. The scaling of the second power law region is 

scaled to match the first. Be sure to enter the power law exponents as positive values. 

For 2D plot, the wave transfer is defined as . 

Default input parameter values 

Parameter name Units Default value 

coef_A   1.0 

qc Å-1 0.04 

power_1(=m1)   4 

power_2(=m2)   4 

background cm-1 0.0 

  

  



 

Figure. 1D plot using the default values (w/500 data points). 

  

3.25.                 UnifiedPower(Law and)Rg(Model) 

The returned value is scaled to units of [cm-1sr-1], absolute scale.  

Note that the level 0 is an extra function that is the inverse function; I (q) = scale/q + 

background. 

Otherwise, program incorporates the empirical multiple level unified Exponential/Power-law 

fit method developed by G. Beaucage. Four functions are included so that One, Two, Three, 

or Four levels can be used. 

The empirical expressions are able to reasonably approximate the scattering from many 

different types of particles, including fractal clusters, random coils (Debye equation), 

ellipsoidal particles, etc.  The empirical fit function is  

 

  

For each level, the four parameters Gi, Rg,i, Bi and Pi must be chosen.  



For example, to approximate the scattering from random coils (Debye equation), set Rg,i as 

the Guinier radius, Pi = 2, and Bi = 2 Gi / Rg,i  

See the listed references for further information on choosing the parameters. 

      

For 2D plot, the wave transfer is defined as . 

Default input parameter values 

Parameter name Units Default value 

scale   1.0 

Rg2 Å 21 

power2   2 

G2 cm-1sr-1 3 

B2 cm-1sr-1 0.0006 

Rg1 Å 15.8 

power1   4 

G1 cm-1sr-1 400 

B1 cm-1sr-1 4.5e-006 

background cm-1 0.0 

  

  



 

Figure. 1D plot using the default values (w/500 data points). 

  

      REFERENCES 

G. Beaucage (1995).  J. Appl. Cryst., vol. 28, p717-728. 

G. Beaucage (1996).  J. Appl. Cryst., vol. 29, p134-146. 

3.26.                  LineModel 

This is a linear function that calculates: 

 

  

where A and B are the coefficients of the first and second order terms. 

Note: For 2D plot, I(q) = I(qx)*I(qy)  which is defined differently from other shape 

independent models. 

Parameter name Units Default value 

A cm-1 1.0 



B Å 1.0 

  

3.27.                     ReflectivityModel 

This model calculates the reflectivity and uses the Parrett algorithm. Up to nine film layers 

are supported between Bottom(substrate) and Medium(Superstrate where the neutron 

enters the first top film). Each layers are composed of [ ½ of the interface(from the 

previous layer or substrate) + flat portion + ½ of the interface(to the next layer or 

medium)]. Only two simple interfacial functions are selectable, error function and linear 

function. The each interfacial thickness is equivalent to (- 2.5 sigma to +2.5 sigma for 

the error function, sigma=roughness). 

Note: This model was contributed by an interested user. 

 

Figure. Comparison (using the SLD profile below) with NISTweb calculation (circles): 

http://www.ncnr.nist.gov/resources/reflcalc.html. 



 

Figure. SLD profile used for the calculation(above). 

3.28.                     ReflectivityIIModel 

    Same as the ReflectivityModel except that the it is more customizable. More interfacial 

functions are supplied. The number of points (npts_inter) for each interface can be choosen.     

The constant (A below but 'nu' as a parameter name of the model) for exp, erf, or power-law is 

an input. The SLD at the interface between layers, inter_i, is calculated with a function chosen 

by a user, where the functions are: 

1) Erf; 

 

2) Power-Law; 

 

  



  

3) Exp; 

 

  

    Note: This model was implemented by an interested user. 

3.29.                     GelFitModel 

    Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at 

least two characteristic length scales, a shorter correlation length (a1) to describe the rapid 

fluctuations in the position of the polymer chains that ensure thermodynamic equilibrium, and a 

longer distance (denoted here as a2) needed to account for the static accumulations of polymer 

pinned down by junction points or clusters of such points. The letter is derived from a simple 

Guinier function. 

The scattered intensity I(Q) is then calculated as: 

 

Where: 

 

  

  

    Note the first term reduces to the Ornstein-Zernicke equation when D=2; ie, when the Flory 

exponent is 0.5 (theta conditions).   In gels with significant hydrogen bonding D has been 

reported to be ~2.6 to 2.8. 

    Note: This model was implemented by an interested user. 



Default input parameter values 

Parameter name Units Default value 

Background cm-1 0.01 

Guinier scale cm-1 1.7 

Lorentzian scale cm-1 3.5 

Radius of gyration Å 104 

Fractal exponent   2 

Correlation length Å 16 

  

  

 

Figure. 1D plot using the default values (w/300 data points, qmin=0.001, and qmax=0.3). 

  

      REFERENCES 

Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C. Han, J. Chem. Phys. 1992, 97 (9), 6829-

6841. 



Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R. Rennie, Erik Geissler, 

Macromolecules 1991, 24, 543-548. 

  

3.30.                      Star Polymer with Gaussian Statistics  

For a star with f arms: 

 

 

 

where is the ensemble average radius of gyration squared of an arm. 

  

References: 

H. Benoit,   J. Polymer Science.,  11, 596-599  (1953) 

  

  

4.    Customized Models  

  

Customized model functions can be redefined or added by users (See SansView tutorial for 

details). 

4.1.                     testmodel 

  

This function, as an example of a user defined function, calculates the intensity = A + Bcos(2q) + 

Csin(2q). 



4.2.                     testmodel_2  

This function, as an example of a user defined function, calculates the intensity =  scale * sin(f)/f, 

where f = A + Bq + Cq2 + Dq3 + Eq4 + Fq5. 

4.3.                     sum_p1_p2  

This function, as an example of a user defined function, calculates the intensity =  scale_factor * 

(CylinderModel + PolymerExclVolume model). To make your own sum(P1+P2) model, select 

'Easy Custom Sum' from the Fitting menu, or modify and compile the file named 'sum_p1_p2.py' 

from 'Edit Custom Model' in the 'Fitting' menu. It works only for single functional models. 

4.4.                     sum_Ap1_1_Ap2  

This function, as an example of a user defined function, calculates the intensity =  (scale_factor * 

CylinderModel + (1-scale_factor) * PolymerExclVolume model). To make your own A*p1+(1-

A)*p2 model, modify and compile the file named 'sum_Ap1_1_Ap2.py' from 'Edit Custom 

Model' in the 'Fitting' menu. It works only for single functional models. 

4.5.                     polynomial5  

This function, as an example of a user defined function, calculates the intensity =  A + Bq + Cq2 

+ Dq3 + Eq4 + Fq5. This model can be modified and compiled from 'Edit Custom Model' in the 

'Fitting' menu. 

4.6.                     sph_bessel_jn  

This function, as an example of a user defined function, calculates the intensity =  

C*sph_jn(Ax+B)+D where the sph_jn is spherical Bessel function of the order n. This model can 

be modified and compiled from 'Edit Custom Model' in the 'Fitting' menu. 

5.    Structure Factors 

  

The information in this section is originated from NIST SANS IgorPro package. 

5.1.                     HardSphere Structure  

This calculates the interparticle structure factor for monodisperse spherical particles interacting 

through hard sphere (excluded volume) interactions. The calculation uses the Percus-Yevick 

closure where the interparticle potential is: 



 

  

where r is the distance from the center of the sphere of a radius R. 

For 2D plot, the wave transfer is defined as . 

Parameter name Units Default value 

effect_radius Å 50.0 

volfraction   0.2 

      

 

Figure. 1D plot using the default values (in linear scale). 

References: 

Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958). 

5.2.                      SquareWell Structure  



This calculates the interparticle structure factor for a squar well fluid spherical particles The 

mean spherical approximation (MSA) closure was used for this calculation, and is not the most 

appropriate closure for an attractive interparticle potential. This solution has been compared to 

Monte Carlo simulations for a square well fluid, showing this calculation to be limited in 

applicability to well depths e < 1.5 kT and volume fractions f < 0.08. 

Positive well depths correspond to an attractive potential well. Negative well depths correspond 

to a potential "shoulder", which may or may not be physically reasonable. 

The well width (l) is defined as multiples of the particle diameter (2*R) 

The interaction potential is: 

 

  

where r is the distance from the center of the sphere of a radius R. 

For 2D plot, the wave transfer is defined as . 

Parameter name Units Default value 

effect_radius Å 50.0 

volfraction   0.04 

welldepth kT 1.5 

wellwidth diameters 1.2 



 

Figure. 1D plot using the default values (in linear scale). 

References: 

Sharma, R. V.; Sharma, K. C. Physica, 89A, 213. (1977). 

  

5.3.                      HayterMSA Structure  

This calculates the Structure factor (the Fourier transform of the pair correlation function g(r)) 

for a system of charged, spheroidal objects in a dielectric medium.  When combined with an 

appropriate form factor (such as sphere, core+shell, ellipsoid etc…), this allows for inclusion of 

the interparticle interference effects due to screened coulomb repulsion between charged 

particles. This routine only works for charged particles.  If the charge is set to zero the routine 

will self destruct.  For non-charged particles use a hard sphere potential. 

The salt concentration is used to compute the ionic strength of the solution which in turn is used 

to compute the Debye screening length.  At present there is no provision for entering the ionic 

strength directly nor for use of any multivalent salts.  The counterions are also assumed to be 

monovalent. 

For 2D plot, the wave transfer is defined as . 

Parameter name Units Default value 



effect_radius Å 20.8 

charge   19 

volfraction   0.2 

temperature K 318 

salt conc M 0 

dielectconst   71.1 

 

Figure. 1D plot using the default values (in linear scale). 

References: 

JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982). 

            JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981). 

5.4.                      StickyHS Structure  

This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive 

well. A perturbative solution of the Percus-Yevick closure is used. The strength of the attractive 

well is described in terms of "stickiness" as defined below. The returned value is a dimensionless 

structure factor, S(q). 



The perturb (perturbation parameter), epsilon, should be held between 0.01 and 0.1. It is best to 

hold the perturbation parameter fixed and let the "stickiness" vary to adjust the interaction 

strength. The stickiness, tau, is defined in the equation below and is a function of both the 

perturbation parameter and the interaction strength. Tau and epsilon are defined in terms of the 

hard sphere diameter (sigma = 2R), the width of the square well, delta (same units as R), and the 

depth of the well, uo, in units of kT. From the definition, it is clear that smaller tau mean stronger 

attraction. 

 

  

  

where the interaction potential is 

 

  

The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an 

attractive interparticle potential. This solution has been compared to Monte Carlo simulations for 

a square well fluid, with good agreement. 

The true particle volume fraction, f, is not equal to h, which appears in most of the reference. The 

two are related in equation (24) of the reference. The reference also describes the relationship 

between this perturbation solution and the original sticky hard sphere (or adhesive sphere) model 

by Baxter. 

NOTES: The calculation can go haywire for certain combinations of the input parameters, 

producing unphysical solutions - in this case errors are reported to the command window and the 

S(q) is set to -1 (it will disappear on a log-log plot). Use tight bounds to keep the parameters to 

values that you know are physical (test them) and keep nudging them until the optimization does 

not hit the constraints. 

For 2D plot, the wave transfer is defined as . 

Parameter name Units Default value 

effect_radius Å 50 



perturb   0.05 

volfraction   0.1 

stickiness K 0.2 

 

Figure. 1D plot using the default values (in linear scale). 

References: 

Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys., 95(12), 9186-9190 

(1991). 
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