1 | ##################################################################### |
---|
2 | #This software was developed by the University of Tennessee as part of the |
---|
3 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | #project funded by the US National Science Foundation. |
---|
5 | #See the license text in license.txt |
---|
6 | #copyright 2008, University of Tennessee |
---|
7 | ###################################################################### |
---|
8 | |
---|
9 | ## TODO: Need test,and check Gaussian averaging |
---|
10 | import numpy |
---|
11 | import math |
---|
12 | ## Singular point |
---|
13 | SIGMA_ZERO = 1.0e-010 |
---|
14 | ## Limit of how many sigmas to be covered for the Gaussian smearing |
---|
15 | # default: 2.5 to cover 98.7% of Gaussian |
---|
16 | LIMIT = 3.0 |
---|
17 | ## Defaults |
---|
18 | R_BIN = {'Xhigh':10.0, 'High':5.0,'Med':5.0,'Low':3.0} |
---|
19 | PHI_BIN ={'Xhigh':20.0,'High':12.0,'Med':6.0,'Low':4.0} |
---|
20 | |
---|
21 | class Smearer2D: |
---|
22 | """ |
---|
23 | Gaussian Q smearing class for SANS 2d data |
---|
24 | """ |
---|
25 | |
---|
26 | def __init__(self, data=None, model=None, index=None, |
---|
27 | limit=LIMIT, accuracy='Low', coords='polar'): |
---|
28 | """ |
---|
29 | Assumption: equally spaced bins in dq_r, dq_phi space. |
---|
30 | |
---|
31 | :param data: 2d data used to set the smearing parameters |
---|
32 | :param model: model function |
---|
33 | :param index: 1d array with len(data) to define the range of the calculation: elements are given as True or False |
---|
34 | :param nr: number of bins in dq_r-axis |
---|
35 | :param nphi: number of bins in dq_phi-axis |
---|
36 | :param coord: coordinates [string], 'polar' or 'cartesian' |
---|
37 | """ |
---|
38 | ## data |
---|
39 | self.data = data |
---|
40 | ## model |
---|
41 | self.model = model |
---|
42 | ## Accuracy: Higher stands for more sampling points in both directions of r and phi. |
---|
43 | self.accuracy = accuracy |
---|
44 | ## number of bins in r axis for over-sampling |
---|
45 | self.nr = R_BIN |
---|
46 | ## number of bins in phi axis for over-sampling |
---|
47 | self.nphi = PHI_BIN |
---|
48 | ## maximum nsigmas |
---|
49 | self.limit = limit |
---|
50 | self.index = index |
---|
51 | self.coords = coords |
---|
52 | self.smearer = True |
---|
53 | |
---|
54 | |
---|
55 | def get_data(self): |
---|
56 | """ |
---|
57 | get qx_data, qy_data, dqx_data,dqy_data,and calculate phi_data=arctan(qx_data/qy_data) |
---|
58 | """ |
---|
59 | if self.data == None or self.data.__class__.__name__ == 'Data1D': |
---|
60 | return None |
---|
61 | if self.data.dqx_data == None or self.data.dqy_data == None: |
---|
62 | return None |
---|
63 | self.qx_data = self.data.qx_data[self.index] |
---|
64 | self.qy_data = self.data.qy_data[self.index] |
---|
65 | self.q_data = self.data.q_data[self.index] |
---|
66 | # Here dqx and dqy mean dq_parr and dq_perp |
---|
67 | self.dqx_data = self.data.dqx_data[self.index] |
---|
68 | self.dqy_data = self.data.dqy_data[self.index] |
---|
69 | self.phi_data = numpy.arctan(self.qx_data/self.qy_data) |
---|
70 | ## Remove singular points if exists |
---|
71 | self.dqx_data[self.dqx_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
72 | self.dqy_data[self.dqy_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
73 | return True |
---|
74 | |
---|
75 | def set_accuracy(self, accuracy='Low'): |
---|
76 | """ |
---|
77 | Set accuracy. |
---|
78 | |
---|
79 | :param accuracy: string |
---|
80 | """ |
---|
81 | self.accuracy = accuracy |
---|
82 | |
---|
83 | def set_smearer(self, smearer=True): |
---|
84 | """ |
---|
85 | Set whether or not smearer will be used |
---|
86 | |
---|
87 | :param smearer: smear object |
---|
88 | |
---|
89 | """ |
---|
90 | self.smearer = smearer |
---|
91 | |
---|
92 | def set_data(self, data=None): |
---|
93 | """ |
---|
94 | Set data. |
---|
95 | |
---|
96 | :param data: DataLoader.Data_info type |
---|
97 | """ |
---|
98 | self.data = data |
---|
99 | |
---|
100 | |
---|
101 | def set_model(self, model=None): |
---|
102 | """ |
---|
103 | Set model. |
---|
104 | |
---|
105 | :param model: sans.models instance |
---|
106 | """ |
---|
107 | self.model = model |
---|
108 | |
---|
109 | def set_index(self, index=None): |
---|
110 | """ |
---|
111 | Set index. |
---|
112 | |
---|
113 | :param index: 1d arrays |
---|
114 | """ |
---|
115 | self.index = index |
---|
116 | |
---|
117 | def get_value(self): |
---|
118 | """ |
---|
119 | Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, |
---|
120 | then find smeared intensity |
---|
121 | For the default values, this is equivalent (but by using numpy array |
---|
122 | the speed optimized by a factor of ten)to the following: :: |
---|
123 | |
---|
124 | |
---|
125 | Remove the singular points if exists |
---|
126 | self.dqx_data[self.dqx_data==0]=SIGMA_ZERO |
---|
127 | self.dqy_data[self.dqy_data==0]=SIGMA_ZERO |
---|
128 | |
---|
129 | for phi in range(0,4): |
---|
130 | for r in range(0,5): |
---|
131 | n = (phi)*5+(r) |
---|
132 | r = r+0.25 |
---|
133 | dphi = phi*2.0*math.pi/4.0 + numpy.arctan( \ |
---|
134 | self.qy_data[index_model]/self.dqy_data[index_model]/ \ |
---|
135 | self.qx_data[index_model]*/self.dqx_data[index_model]) |
---|
136 | dq = r*sqrt( self.dqx_data[index_model]*\ |
---|
137 | self.dqx_data[index_model] \ |
---|
138 | + self.dqy_data[index_model]*self.dqy_data[index_model] ) |
---|
139 | #integrant of exp(-0.5*r*r) r dr at each bins : |
---|
140 | The integration may not need. |
---|
141 | weight_res[n] = e^{(-0.5*((r-0.25)*(r-0.25)))}- \ |
---|
142 | e^{(-0.5*((r-0.25)*(r-0.25)))} |
---|
143 | #if phi != 0 and r != 0: |
---|
144 | qx_res = numpy.append(qx_res,self.qx_data[index_model]+ \ |
---|
145 | dq * cos(dphi)) |
---|
146 | qy_res = numpy.append(qy_res,self.qy_data[index_model]+ \ |
---|
147 | dq * sin(dphi)) |
---|
148 | |
---|
149 | Then compute I(qx_res,qy_res) and do weighted averaging. |
---|
150 | |
---|
151 | """ |
---|
152 | valid = self.get_data() |
---|
153 | if valid == None: |
---|
154 | return valid |
---|
155 | # all zero values of dq |
---|
156 | if numpy.all(numpy.fabs(self.dqx_data <= 1.1e-10)) and \ |
---|
157 | numpy.all(numpy.fabs(self.dqy_data <= 1.1e-10)): |
---|
158 | self.smearer = False |
---|
159 | |
---|
160 | if self.smearer == False: |
---|
161 | return self.model.evalDistribution([self.qx_data, self.qy_data]) |
---|
162 | |
---|
163 | nr = self.nr[self.accuracy] |
---|
164 | nphi = self.nphi[self.accuracy] |
---|
165 | |
---|
166 | # data length in the range of self.index |
---|
167 | len_data = len(self.qx_data) |
---|
168 | len_datay = len(self.qy_data) |
---|
169 | |
---|
170 | # Number of bins in the dqr direction (polar coordinate of dqx and dqy) |
---|
171 | bin_size = self.limit / nr |
---|
172 | # Total number of bins = # of bins |
---|
173 | # in dq_r-direction times # of bins in dq_phi-direction |
---|
174 | n_bins = nr * nphi |
---|
175 | # Mean values of dqr at each bins ,starting from the half of bin size |
---|
176 | r = bin_size / 2.0 + numpy.arange(nr) * bin_size |
---|
177 | # mean values of qphi at each bines |
---|
178 | phi = numpy.arange(nphi) |
---|
179 | dphi = phi * 2.0 * math.pi / nphi |
---|
180 | dphi = dphi.repeat(nr) |
---|
181 | |
---|
182 | ## Transform to polar coordinate, |
---|
183 | # and set dphi at each data points ; 1d array |
---|
184 | dphi = dphi.repeat(len_data) |
---|
185 | q_phi = self.qy_data / self.qx_data |
---|
186 | |
---|
187 | # Starting angle is different between polar and cartesian coordinates. |
---|
188 | #if self.coords != 'polar': |
---|
189 | # dphi += numpy.arctan( q_phi * self.dqx_data/ \ |
---|
190 | # self.dqy_data).repeat(n_bins).reshape(len_data,\ |
---|
191 | # n_bins).transpose().flatten() |
---|
192 | |
---|
193 | # The angle (phi) of the original q point |
---|
194 | q_phi = numpy.arctan(q_phi).repeat(n_bins).reshape(len_data,\ |
---|
195 | n_bins).transpose().flatten() |
---|
196 | ## Find Gaussian weight for each dq bins: The weight depends only |
---|
197 | # on r-direction (The integration may not need) |
---|
198 | weight_res = numpy.exp(-0.5 * ((r - bin_size / 2.0) * \ |
---|
199 | (r - bin_size / 2.0)))- \ |
---|
200 | numpy.exp(-0.5 * ((r + bin_size / 2.0 ) *\ |
---|
201 | (r + bin_size / 2.0))) |
---|
202 | # No needs of normalization here. |
---|
203 | #weight_res /= numpy.sum(weight_res) |
---|
204 | weight_res = weight_res.repeat(nphi).reshape(nr, nphi) |
---|
205 | |
---|
206 | weight_res = weight_res.transpose().flatten() |
---|
207 | |
---|
208 | ## Set dr for all dq bins for averaging |
---|
209 | dr = r.repeat(nphi).reshape(nr,nphi).transpose().flatten() |
---|
210 | ## Set dqr for all data points |
---|
211 | dqx = numpy.outer(dr,self.dqx_data).flatten() |
---|
212 | dqy = numpy.outer(dr,self.dqy_data).flatten() |
---|
213 | |
---|
214 | qx = self.qx_data.repeat(n_bins).reshape(len_data,\ |
---|
215 | n_bins).transpose().flatten() |
---|
216 | qy = self.qy_data.repeat(n_bins).reshape(len_data,\ |
---|
217 | n_bins).transpose().flatten() |
---|
218 | |
---|
219 | # The polar needs rotation by -q_phi |
---|
220 | if self.coords == 'polar': |
---|
221 | q_r = numpy.sqrt(qx * qx + qy * qy) |
---|
222 | qx_res = ((dqx*numpy.cos(dphi) + q_r) * numpy.cos(-q_phi) +\ |
---|
223 | dqy*numpy.sin(dphi) * numpy.sin(-q_phi)) |
---|
224 | qy_res = (-(dqx*numpy.cos(dphi) + q_r) * numpy.sin(-q_phi) +\ |
---|
225 | dqy*numpy.sin(dphi) * numpy.cos(-q_phi)) |
---|
226 | else: |
---|
227 | qx_res = qx + dqx*numpy.cos(dphi) |
---|
228 | qy_res = qy + dqy*numpy.sin(dphi) |
---|
229 | |
---|
230 | ## Evaluate all points |
---|
231 | val = self.model.evalDistribution([qx_res, qy_res]) |
---|
232 | |
---|
233 | ## Reshape into 2d array to use numpy weighted averaging |
---|
234 | value_res= val.reshape(n_bins,len(self.qx_data)) |
---|
235 | |
---|
236 | ## Averaging with Gaussian weighting: normalization included. |
---|
237 | value =numpy.average(value_res,axis=0, weights=weight_res) |
---|
238 | |
---|
239 | ## Return the smeared values in the range of self.index |
---|
240 | return value |
---|
241 | |
---|
242 | if __name__ == '__main__': |
---|
243 | ## Test w/ 2D linear function |
---|
244 | x = 0.001*numpy.arange(1,11) |
---|
245 | dx = numpy.ones(len(x))*0.0003 |
---|
246 | y = 0.001*numpy.arange(1,11) |
---|
247 | dy = numpy.ones(len(x))*0.001 |
---|
248 | z = numpy.ones(10) |
---|
249 | dz = numpy.sqrt(z) |
---|
250 | |
---|
251 | from DataLoader import Data2D |
---|
252 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
253 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
254 | out = Data2D() |
---|
255 | out.data = z |
---|
256 | out.qx_data = x |
---|
257 | out.qy_data = y |
---|
258 | out.dqx_data = dx |
---|
259 | out.dqy_data = dy |
---|
260 | out.q_data = numpy.sqrt(dx * dx + dy * dy) |
---|
261 | index = numpy.ones(len(x), dtype = bool) |
---|
262 | out.mask = index |
---|
263 | from sans.models.LineModel import LineModel |
---|
264 | model = LineModel() |
---|
265 | model.setParam("A", 0) |
---|
266 | |
---|
267 | smear = Smearer2D(out,model,index) |
---|
268 | #smear.set_accuracy('Xhigh') |
---|
269 | value = smear.get_value() |
---|
270 | ## All data are ones, so the smeared should also be ones. |
---|
271 | print "Data length =",len(value) |
---|
272 | print " 2D linear function, I = 0 + 1*qy" |
---|
273 | text = " Gaussian weighted averaging on a 2D linear function will " |
---|
274 | text += "provides the results same as without the averaging." |
---|
275 | print text |
---|
276 | print "qx_data", "qy_data", "I_nonsmear", "I_smeared" |
---|
277 | for ind in range(len(value)): |
---|
278 | print x[ind],y[ind],model.evalDistribution([x,y])[ind], value[ind] |
---|
279 | |
---|
280 | """ |
---|
281 | for i in range(len(qx_res)/(128*128)): |
---|
282 | k = i * 128*128 +64 |
---|
283 | |
---|
284 | print qx_res[k]-qqx[k], qy_res[k]-qqy[k] |
---|
285 | print qqx[64],qqy[64] |
---|
286 | """ |
---|
287 | """ |
---|
288 | if __name__ == '__main__': |
---|
289 | ## Another Test w/ constant function |
---|
290 | x = 0.001*numpy.arange(1,11) |
---|
291 | dx = numpy.ones(len(x))*0.001 |
---|
292 | y = 0.001*numpy.arange(1,11) |
---|
293 | dy = numpy.ones(len(x))*0.001 |
---|
294 | z = numpy.ones(10) |
---|
295 | dz = numpy.sqrt(z) |
---|
296 | |
---|
297 | from DataLoader import Data2D |
---|
298 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
299 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
300 | out = Data2D() |
---|
301 | out.data = z |
---|
302 | out.qx_data = x |
---|
303 | out.qy_data = y |
---|
304 | out.dqx_data = dx |
---|
305 | out.dqy_data = dy |
---|
306 | index = numpy.ones(len(x), dtype = bool) |
---|
307 | out.mask = index |
---|
308 | from sans.models.Constant import Constant |
---|
309 | model = Constant() |
---|
310 | |
---|
311 | value = Smearer2D(out,model,index).get_value() |
---|
312 | ## All data are ones, so the smeared values should also be ones. |
---|
313 | print "Data length =",len(value), ", Data=",value |
---|
314 | """ |
---|