/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: refactor so that we pull in the old sansmodels.c_extensions */ #include #include "models.hh" #include "parameters.hh" #include using namespace std; extern "C" { #include "libCylinder.h" #include "triaxial_ellipsoid.h" } TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { scale = Parameter(1.0); semi_axisA = Parameter(20.0, true); semi_axisA.set_min(0.0); semi_axisB = Parameter(20.0, true); semi_axisB.set_min(0.0); semi_axisC = Parameter(400.0, true); semi_axisC.set_min(0.0); contrast = Parameter(5.3e-6); background = Parameter(0.0); axis_theta = Parameter(0.0, true); axis_phi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double TriaxialEllipsoidModel :: operator()(double q) { double dp[5]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = semi_axisA(); dp[2] = semi_axisB(); dp[3] = semi_axisC(); dp[4] = contrast(); dp[5] = 0.0; // Get the dispersion points for the semi axis A vector weights_semi_axisA; semi_axisA.get_weights(weights_semi_axisA); // Get the dispersion points for the semi axis B vector weights_semi_axisB; semi_axisB.get_weights(weights_semi_axisB); // Get the dispersion points for the semi axis C vector weights_semi_axisC; semi_axisC.get_weights(weights_semi_axisC); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Loop over semi axis A weight points for(int i=0; i< (int)weights_semi_axisA.size(); i++) { dp[1] = weights_semi_axisA[i].value; // Loop over semi axis B weight points for(int j=0; j< (int)weights_semi_axisB.size(); j++) { dp[2] = weights_semi_axisB[j].value; // Loop over semi axis C weight points for(int k=0; k< (int)weights_semi_axisC.size(); k++) { dp[3] = weights_semi_axisC[k].value; sum += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q); norm += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; } } } return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double TriaxialEllipsoidModel :: operator()(double qx, double qy) { TriaxialEllipsoidParameters dp; // Fill parameter array dp.scale = scale(); dp.semi_axisA = semi_axisA(); dp.semi_axisB = semi_axisB(); dp.semi_axisC = semi_axisC(); dp.contrast = contrast(); dp.background = 0.0; dp.axis_theta = axis_theta(); dp.axis_phi = axis_phi(); // Get the dispersion points for the semi_axis A vector weights_semi_axisA; semi_axisA.get_weights(weights_semi_axisA); // Get the dispersion points for the semi_axis B vector weights_semi_axisB; semi_axisB.get_weights(weights_semi_axisB); // Get the dispersion points for the semi_axis C vector weights_semi_axisC; semi_axisC.get_weights(weights_semi_axisC); // Get angular averaging for theta vector weights_theta; axis_theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; axis_phi.get_weights(weights_phi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Loop over semi axis A weight points for(int i=0; i< (int)weights_semi_axisA.size(); i++) { dp.semi_axisA = weights_semi_axisA[i].value; // Loop over semi axis B weight points for(int j=0; j< (int)weights_semi_axisB.size(); j++) { dp.semi_axisB = weights_semi_axisB[j].value; // Loop over semi axis C weight points for(int k=0; k < (int)weights_semi_axisC.size(); k++) { dp.semi_axisC = weights_semi_axisC[k].value; // Average over theta distribution for(int l=0; l< (int)weights_theta.size(); l++) { dp.axis_theta = weights_theta[l].value; // Average over phi distribution for(int m=0; m <(int)weights_phi.size(); m++) { dp.axis_phi = weights_phi[m].value; double _ptvalue = weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_theta[l].weight * weights_phi[m].weight * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy); if (weights_theta.size()>1) { _ptvalue *= sin(weights_theta[k].value); } sum += _ptvalue; norm += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_theta[l].weight * weights_phi[m].weight; } } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the triaxial ellipsoid * @param q: q-value * @param phi: angle phi * @return: function value */ double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); }