/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: refactor so that we pull in the old sansmodels.c_extensions */ #include #include "models.hh" #include "parameters.hh" #include using namespace std; extern "C" { #include "libCylinder.h" #include "libStructureFactor.h" #include "triaxial_ellipsoid.h" } TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { scale = Parameter(1.0); semi_axisA = Parameter(35.0, true); semi_axisA.set_min(0.0); semi_axisB = Parameter(100.0, true); semi_axisB.set_min(0.0); semi_axisC = Parameter(400.0, true); semi_axisC.set_min(0.0); sldEll = Parameter(1.0e-6); sldSolv = Parameter(6.3e-6); background = Parameter(0.0); axis_theta = Parameter(1.0, true); axis_phi = Parameter(1.0, true); axis_psi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double TriaxialEllipsoidModel :: operator()(double q) { double dp[7]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = semi_axisA(); dp[2] = semi_axisB(); dp[3] = semi_axisC(); dp[4] = sldEll(); dp[5] = sldSolv(); dp[6] = 0.0; // Get the dispersion points for the semi axis A vector weights_semi_axisA; semi_axisA.get_weights(weights_semi_axisA); // Get the dispersion points for the semi axis B vector weights_semi_axisB; semi_axisB.get_weights(weights_semi_axisB); // Get the dispersion points for the semi axis C vector weights_semi_axisC; semi_axisC.get_weights(weights_semi_axisC); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over semi axis A weight points for(int i=0; i< (int)weights_semi_axisA.size(); i++) { dp[1] = weights_semi_axisA[i].value; // Loop over semi axis B weight points for(int j=0; j< (int)weights_semi_axisB.size(); j++) { dp[2] = weights_semi_axisB[j].value; // Loop over semi axis C weight points for(int k=0; k< (int)weights_semi_axisC.size(); k++) { dp[3] = weights_semi_axisC[k].value; //Un-normalize by volume sum += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q) * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; //Find average volume vol += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; norm += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; } } } if (vol != 0.0 && norm != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double TriaxialEllipsoidModel :: operator()(double qx, double qy) { TriaxialEllipsoidParameters dp; // Fill parameter array dp.scale = scale(); dp.semi_axisA = semi_axisA(); dp.semi_axisB = semi_axisB(); dp.semi_axisC = semi_axisC(); dp.sldEll = sldEll(); dp.sldSolv = sldSolv(); dp.background = 0.0; dp.axis_theta = axis_theta(); dp.axis_phi = axis_phi(); dp.axis_psi = axis_psi(); // Get the dispersion points for the semi_axis A vector weights_semi_axisA; semi_axisA.get_weights(weights_semi_axisA); // Get the dispersion points for the semi_axis B vector weights_semi_axisB; semi_axisB.get_weights(weights_semi_axisB); // Get the dispersion points for the semi_axis C vector weights_semi_axisC; semi_axisC.get_weights(weights_semi_axisC); // Get angular averaging for theta vector weights_theta; axis_theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; axis_phi.get_weights(weights_phi); // Get angular averaging for psi vector weights_psi; axis_psi.get_weights(weights_psi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; // Loop over semi axis A weight points for(int i=0; i< (int)weights_semi_axisA.size(); i++) { dp.semi_axisA = weights_semi_axisA[i].value; // Loop over semi axis B weight points for(int j=0; j< (int)weights_semi_axisB.size(); j++) { dp.semi_axisB = weights_semi_axisB[j].value; // Loop over semi axis C weight points for(int k=0; k < (int)weights_semi_axisC.size(); k++) { dp.semi_axisC = weights_semi_axisC[k].value; // Average over theta distribution for(int l=0; l< (int)weights_theta.size(); l++) { dp.axis_theta = weights_theta[l].value; // Average over phi distribution for(int m=0; m <(int)weights_phi.size(); m++) { dp.axis_phi = weights_phi[m].value; // Average over psi distribution for(int n=0; n <(int)weights_psi.size(); n++) { dp.axis_psi = weights_psi[n].value; //Un-normalize by volume double _ptvalue = weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_theta[l].weight * weights_phi[m].weight * weights_psi[n].weight * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy) * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; if (weights_theta.size()>1) { _ptvalue *= sin(weights_theta[k].value); } sum += _ptvalue; //Find average volume vol += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; //Find norm for volume norm_vol += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; norm += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * weights_theta[l].weight * weights_phi[m].weight * weights_psi[n].weight; } } } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); if (vol != 0.0 && norm_vol != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the triaxial ellipsoid * @param q: q-value * @param phi: angle phi * @return: function value */ double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); } /** * Function to calculate effective radius * @return: effective radius value */ double TriaxialEllipsoidModel :: calculate_ER() { TriaxialEllipsoidParameters dp; dp.semi_axisA = semi_axisA(); dp.semi_axisB = semi_axisB(); //polar axis C dp.semi_axisC = semi_axisC(); double rad_out = 0.0; //Surface average radius at the equat. cross section. double suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Get the dispersion points for the semi_axis A vector weights_semi_axisA; semi_axisA.get_weights(weights_semi_axisA); // Get the dispersion points for the semi_axis B vector weights_semi_axisB; semi_axisB.get_weights(weights_semi_axisB); // Get the dispersion points for the semi_axis C vector weights_semi_axisC; semi_axisC.get_weights(weights_semi_axisC); // Loop over semi axis A weight points for(int i=0; i< (int)weights_semi_axisA.size(); i++) { dp.semi_axisA = weights_semi_axisA[i].value; // Loop over semi axis B weight points for(int j=0; j< (int)weights_semi_axisB.size(); j++) { dp.semi_axisB = weights_semi_axisB[j].value; // Loop over semi axis C weight points for(int k=0; k < (int)weights_semi_axisC.size(); k++) { dp.semi_axisC = weights_semi_axisC[k].value; //Calculate surface averaged radius suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); //Sum sum += weights_semi_axisA[i].weight * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight * DiamEllip(dp.semi_axisC, suf_rad)/2.0; //Norm norm += weights_semi_axisA[i].weight* weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; } } } if (norm != 0){ //return the averaged value rad_out = sum/norm;} else{ //return normal value rad_out = DiamEllip(dp.semi_axisC, suf_rad)/2.0;} return rad_out; }