/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: refactor so that we pull in the old sansmodels.c_extensions */ #include #include "models.hh" #include "parameters.hh" #include using namespace std; extern "C" { #include "libCylinder.h" #include "libStructureFactor.h" #include "cylinder.h" } CylinderModel :: CylinderModel() { scale = Parameter(1.0); radius = Parameter(20.0, true); radius.set_min(0.0); length = Parameter(400.0, true); length.set_min(0.0); sldCyl = Parameter(4.e-6); sldSolv = Parameter(1.e-6); background = Parameter(0.0); cyl_theta = Parameter(0.0, true); cyl_phi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double CylinderModel :: operator()(double q) { double dp[6]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = radius(); dp[2] = length(); dp[3] = sldCyl(); dp[4] = sldSolv(); dp[5] = 0.0; // Get the dispersion points for the radius vector weights_rad; radius.get_weights(weights_rad); // Get the dispersion points for the length vector weights_len; length.get_weights(weights_len); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over radius weight points for(size_t i=0; i weights_rad; radius.get_weights(weights_rad); // Get the dispersion points for the length vector weights_len; length.get_weights(weights_len); // Get angular averaging for theta vector weights_theta; cyl_theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; cyl_phi.get_weights(weights_phi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; double pi = 4.0*atan(1.0); // Loop over radius weight points for(size_t i=0; i1) { _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); } sum += _ptvalue; //Find average volume vol += weights_rad[i].weight * weights_len[j].weight * pow(weights_rad[i].value,2)*weights_len[j].value; //Find norm for volume norm_vol += weights_rad[i].weight * weights_len[j].weight; norm += weights_rad[i].weight * weights_len[j].weight * weights_theta[k].weight * weights_phi[l].weight; } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); if (vol != 0.0 && norm_vol != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the cylinder * @param q: q-value * @param phi: angle phi * @return: function value */ double CylinderModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); } /** * Function to calculate effective radius * @return: effective radius value */ double CylinderModel :: calculate_ER() { CylinderParameters dp; dp.radius = radius(); dp.length = length(); double rad_out = 0.0; // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Get the dispersion points for the major shell vector weights_length; length.get_weights(weights_length); // Get the dispersion points for the minor shell vector weights_radius ; radius.get_weights(weights_radius); // Loop over major shell weight points for(int i=0; i< (int)weights_length.size(); i++) { dp.length = weights_length[i].value; for(int k=0; k< (int)weights_radius.size(); k++) { dp.radius = weights_radius[k].value; //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. sum +=weights_length[i].weight * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; norm += weights_length[i].weight* weights_radius[k].weight; } } if (norm != 0){ //return the averaged value rad_out = sum/norm;} else{ //return normal value //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. rad_out = DiamCyl(dp.length,dp.radius)/2.0;} return rad_out; } // Testing code int main(void) { CylinderModel c = CylinderModel(); printf("Length = %g\n", c.length()); printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); printf("I(Q=%g) = %g\n", 0.001, c(0.001)); c.radius.dispersion = new GaussianDispersion(); c.radius.dispersion->npts = 100; c.radius.dispersion->width = 5; //c.length.dispersion = GaussianDispersion(); //c.length.dispersion.npts = 20; //c.length.dispersion.width = 65; printf("I(Q=%g) = %g\n", 0.001, c(0.001)); c.scale = 10.0; printf("I(Q=%g) = %g\n", 0.001, c(0.001)); printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); printf("I(Q=%g, Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854)); // Average over phi at theta=90 deg c.cyl_theta = 1.57; double values_th[100]; double values[100]; double weights[100]; double pi = acos(-1.0); printf("pi=%g\n", pi); for(int i=0; i<100; i++){ values[i] = (float)i*2.0*pi/99.0; values_th[i] = (float)i*pi/99.0; weights[i] = 1.0; } //c.radius.dispersion->width = 0; c.cyl_phi.dispersion = new ArrayDispersion(); c.cyl_theta.dispersion = new ArrayDispersion(); (*c.cyl_phi.dispersion).set_weights(100, values, weights); (*c.cyl_theta.dispersion).set_weights(100, values_th, weights); double i_avg = c(0.01, 0.01); double i_1d = c(sqrt(0.0002)); printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg); printf("I(Q=%g) = %g\n", sqrt(0.0002), i_1d); printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg); return 0; }