/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** [PYTHONCLASS] * * C extension * * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY * DO NOT MODIFY THIS FILE, MODIFY lorentzian.h * AND RE-RUN THE GENERATOR SCRIPT * */ extern "C" { #include #include "structmember.h" #include #include #include #include #include "lorentzian.h" } #include "models.hh" #include "dispersion_visitor.hh" /// Error object for raised exceptions static PyObject * [PYTHONCLASS]Error = NULL; // Class definition typedef struct { PyObject_HEAD /// Parameters PyObject * params; /// Dispersion parameters PyObject * dispersion; /// Underlying model object Lorentzian * model; /// Log for unit testing PyObject * log; } [PYTHONCLASS]; static void [PYTHONCLASS]_dealloc([PYTHONCLASS]* self) { self->ob_type->tp_free((PyObject*)self); } static PyObject * [PYTHONCLASS]_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { [PYTHONCLASS] *self; self = ([PYTHONCLASS] *)type->tp_alloc(type, 0); return (PyObject *)self; } static int [PYTHONCLASS]_init([PYTHONCLASS] *self, PyObject *args, PyObject *kwds) { if (self != NULL) { // Create parameters self->params = PyDict_New(); self->dispersion = PyDict_New(); self->model = new Lorentzian(); // Initialize parameter dictionary PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000)); PyDict_SetItemString(self->params,"center",Py_BuildValue("d",0.000000)); PyDict_SetItemString(self->params,"gamma",Py_BuildValue("d",1.000000)); // Initialize dispersion / averaging parameter dict DispersionVisitor* visitor = new DispersionVisitor(); PyObject * disp_dict; // Create empty log self->log = PyDict_New(); } return 0; } static PyMemberDef [PYTHONCLASS]_members[] = { {"params", T_OBJECT, offsetof([PYTHONCLASS], params), 0, "Parameters"}, {"dispersion", T_OBJECT, offsetof([PYTHONCLASS], dispersion), 0, "Dispersion parameters"}, {"log", T_OBJECT, offsetof([PYTHONCLASS], log), 0, "Log"}, {NULL} /* Sentinel */ }; /** Read double from PyObject @param p PyObject @return double */ double [PYTHONCLASS]_readDouble(PyObject *p) { if (PyFloat_Check(p)==1) { return (double)(((PyFloatObject *)(p))->ob_fval); } else if (PyInt_Check(p)==1) { return (double)(((PyIntObject *)(p))->ob_ival); } else if (PyLong_Check(p)==1) { return (double)PyLong_AsLong(p); } else { return 0.0; } } /** * Function to call to evaluate model * @param args: input q or [q,phi] * @return: function value */ static PyObject * run([PYTHONCLASS] *self, PyObject *args) { double q_value, phi_value; PyObject* pars; int npars; // Get parameters // Reader parameter dictionary self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") ); self->model->center = PyFloat_AsDouble( PyDict_GetItemString(self->params, "center") ); self->model->gamma = PyFloat_AsDouble( PyDict_GetItemString(self->params, "gamma") ); // Read in dispersion parameters PyObject* disp_dict; DispersionVisitor* visitor = new DispersionVisitor(); // Get input and determine whether we have to supply a 1D or 2D return value. if ( !PyArg_ParseTuple(args,"O",&pars) ) { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].run expects a q value."); return NULL; } // Check params if( PyList_Check(pars)==1) { // Length of list should be 2 for I(q,phi) npars = PyList_GET_SIZE(pars); if(npars!=2) { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].run expects a double or a list of dimension 2."); return NULL; } // We have a vector q, get the q and phi values at which // to evaluate I(q,phi) q_value = [PYTHONCLASS]_readDouble(PyList_GET_ITEM(pars,0)); phi_value = [PYTHONCLASS]_readDouble(PyList_GET_ITEM(pars,1)); // Skip zero if (q_value==0) { return Py_BuildValue("d",0.0); } return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value)); } else { // We have a scalar q, we will evaluate I(q) q_value = [PYTHONCLASS]_readDouble(pars); return Py_BuildValue("d",(*(self->model))(q_value)); } } /** * Function to call to evaluate model in cartesian coordinates * @param args: input q or [qx, qy]] * @return: function value */ static PyObject * runXY([PYTHONCLASS] *self, PyObject *args) { double qx_value, qy_value; PyObject* pars; int npars; // Get parameters // Reader parameter dictionary self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") ); self->model->center = PyFloat_AsDouble( PyDict_GetItemString(self->params, "center") ); self->model->gamma = PyFloat_AsDouble( PyDict_GetItemString(self->params, "gamma") ); // Read in dispersion parameters PyObject* disp_dict; DispersionVisitor* visitor = new DispersionVisitor(); // Get input and determine whether we have to supply a 1D or 2D return value. if ( !PyArg_ParseTuple(args,"O",&pars) ) { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].run expects a q value."); return NULL; } // Check params if( PyList_Check(pars)==1) { // Length of list should be 2 for I(qx, qy)) npars = PyList_GET_SIZE(pars); if(npars!=2) { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].run expects a double or a list of dimension 2."); return NULL; } // We have a vector q, get the qx and qy values at which // to evaluate I(qx,qy) qx_value = [PYTHONCLASS]_readDouble(PyList_GET_ITEM(pars,0)); qy_value = [PYTHONCLASS]_readDouble(PyList_GET_ITEM(pars,1)); return Py_BuildValue("d",(*(self->model))(qx_value,qy_value)); } else { // We have a scalar q, we will evaluate I(q) qx_value = [PYTHONCLASS]_readDouble(pars); return Py_BuildValue("d",(*(self->model))(qx_value)); } } static PyObject * reset([PYTHONCLASS] *self, PyObject *args) { return Py_BuildValue("d",0.0); } static PyObject * set_dispersion([PYTHONCLASS] *self, PyObject *args) { PyObject * disp; const char * par_name; if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].set_dispersion expects a DispersionModel object."); return NULL; } void *temp = PyCObject_AsVoidPtr(disp); DispersionModel * dispersion = static_cast(temp); // Ugliness necessary to go from python to C // TODO: refactor this { PyErr_SetString([PYTHONCLASS]Error, "[PYTHONCLASS].set_dispersion expects a valid parameter name."); return NULL; } DispersionVisitor* visitor = new DispersionVisitor(); PyObject * disp_dict = PyDict_New(); dispersion->accept_as_source(visitor, dispersion, disp_dict); PyDict_SetItemString(self->dispersion, par_name, disp_dict); return Py_BuildValue("i",1); } static PyMethodDef [PYTHONCLASS]_methods[] = { {"run", (PyCFunction)run , METH_VARARGS, "Evaluate the model at a given Q or Q, phi"}, {"runXY", (PyCFunction)runXY , METH_VARARGS, "Evaluate the model at a given Q or Qx, Qy"}, {"reset", (PyCFunction)reset , METH_VARARGS, "Reset pair correlation"}, {"set_dispersion", (PyCFunction)set_dispersion , METH_VARARGS, "Set the dispersion model for a given parameter"}, {NULL} }; static PyTypeObject [PYTHONCLASS]Type = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "[PYTHONCLASS]", /*tp_name*/ sizeof([PYTHONCLASS]), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)[PYTHONCLASS]_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ "[PYTHONCLASS] objects", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ [PYTHONCLASS]_methods, /* tp_methods */ [PYTHONCLASS]_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)[PYTHONCLASS]_init, /* tp_init */ 0, /* tp_alloc */ [PYTHONCLASS]_new, /* tp_new */ }; static PyMethodDef module_methods[] = { {NULL} }; /** * Function used to add the model class to a module * @param module: module to add the class to */ void add[PYTHONCLASS](PyObject *module) { PyObject *d; if (PyType_Ready(&[PYTHONCLASS]Type) < 0) return; Py_INCREF(&[PYTHONCLASS]Type); PyModule_AddObject(module, "[PYTHONCLASS]", (PyObject *)&[PYTHONCLASS]Type); d = PyModule_GetDict(module); [PYTHONCLASS]Error = PyErr_NewException("[PYTHONCLASS].error", NULL, NULL); PyDict_SetItemString(d, "[PYTHONCLASS]Error", [PYTHONCLASS]Error); }