1 | /** |
---|
2 | * Scattering model for a cylinder with elliptical cross-section |
---|
3 | */ |
---|
4 | |
---|
5 | #include "elliptical_cylinder.h" |
---|
6 | #include <math.h> |
---|
7 | #include "libCylinder.h" |
---|
8 | #include <stdio.h> |
---|
9 | #include <stdlib.h> |
---|
10 | |
---|
11 | |
---|
12 | /** |
---|
13 | * Function to evaluate 1D scattering function |
---|
14 | * @param pars: parameters of the cylinder |
---|
15 | * @param q: q-value |
---|
16 | * @return: function value |
---|
17 | */ |
---|
18 | double elliptical_cylinder_analytical_1D(EllipticalCylinderParameters *pars, double q) { |
---|
19 | double dp[6]; |
---|
20 | |
---|
21 | // Fill paramater array |
---|
22 | dp[0] = pars->scale; |
---|
23 | dp[1] = pars->r_minor; |
---|
24 | dp[2] = pars->r_ratio; |
---|
25 | dp[3] = pars->length; |
---|
26 | dp[4] = pars->contrast; |
---|
27 | dp[5] = pars->background; |
---|
28 | |
---|
29 | // Call library function to evaluate model |
---|
30 | return EllipCyl20(dp, q); |
---|
31 | } |
---|
32 | |
---|
33 | double elliptical_cylinder_kernel(EllipticalCylinderParameters *pars, double q, double alpha, double psi, double nu) { |
---|
34 | double qr; |
---|
35 | double qL; |
---|
36 | double r_major; |
---|
37 | double kernel; |
---|
38 | |
---|
39 | r_major = pars->r_ratio * pars->r_minor; |
---|
40 | |
---|
41 | qr = q*sin(alpha)*sqrt( r_major*r_major*sin(nu)*sin(nu) + pars->r_minor*pars->r_minor*cos(nu)*cos(nu) ); |
---|
42 | qL = q*pars->length*cos(alpha)/2.0; |
---|
43 | |
---|
44 | kernel = 2.0*NR_BessJ1(qr)/qr * sin(qL)/qL; |
---|
45 | return kernel*kernel; |
---|
46 | } |
---|
47 | |
---|
48 | /** |
---|
49 | * Function to evaluate 2D scattering function |
---|
50 | * @param pars: parameters of the cylinder |
---|
51 | * @param q: q-value |
---|
52 | * @return: function value |
---|
53 | */ |
---|
54 | double elliptical_cylinder_analytical_2DXY(EllipticalCylinderParameters *pars, double qx, double qy) { |
---|
55 | double q; |
---|
56 | q = sqrt(qx*qx+qy*qy); |
---|
57 | return elliptical_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
58 | } |
---|
59 | |
---|
60 | /** |
---|
61 | * Function to evaluate 2D scattering function |
---|
62 | * @param pars: parameters of the cylinder |
---|
63 | * @param q: q-value |
---|
64 | * @param theta: angle theta = angle wrt z axis |
---|
65 | * @param phi: angle phi = angle around y axis (starting from the x+-direction as phi = 0) |
---|
66 | * @return: function value |
---|
67 | */ |
---|
68 | double elliptical_cylinder_analytical_2D(EllipticalCylinderParameters *pars, double q, double phi) { |
---|
69 | return elliptical_cylinder_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
70 | } |
---|
71 | |
---|
72 | /** |
---|
73 | * Function to evaluate 2D scattering function |
---|
74 | * @param pars: parameters of the cylinder |
---|
75 | * @param q: q-value |
---|
76 | * @param q_x: q_x / q |
---|
77 | * @param q_y: q_y / q |
---|
78 | * @return: function value |
---|
79 | */ |
---|
80 | double elliptical_cylinder_analytical_2D_scaled(EllipticalCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
81 | double cyl_x, cyl_y, cyl_z; |
---|
82 | double ell_x, ell_y; |
---|
83 | double q_z; |
---|
84 | double alpha, vol, cos_val; |
---|
85 | double nu, cos_nu; |
---|
86 | double answer; |
---|
87 | |
---|
88 | //Cylinder orientation |
---|
89 | cyl_x = sin(pars->cyl_theta) * cos(pars->cyl_phi); |
---|
90 | cyl_y = sin(pars->cyl_theta) * sin(pars->cyl_phi); |
---|
91 | cyl_z = cos(pars->cyl_theta); |
---|
92 | |
---|
93 | // q vector |
---|
94 | q_z = 0; |
---|
95 | |
---|
96 | // Compute the angle btw vector q and the |
---|
97 | // axis of the cylinder |
---|
98 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
99 | |
---|
100 | // The following test should always pass |
---|
101 | if (fabs(cos_val)>1.0) { |
---|
102 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
103 | return 0; |
---|
104 | } |
---|
105 | |
---|
106 | // Note: cos(alpha) = 0 and 1 will get an |
---|
107 | // undefined value from CylKernel |
---|
108 | alpha = acos( cos_val ); |
---|
109 | |
---|
110 | //ellipse orientation: |
---|
111 | // the elliptical corss section was transformed and projected |
---|
112 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
113 | // on the detector plane. |
---|
114 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
115 | // the wave vector q. |
---|
116 | |
---|
117 | //x- y- component on the detector plane. |
---|
118 | ell_x = cos(pars->cyl_psi); |
---|
119 | ell_y = sin(pars->cyl_psi); |
---|
120 | |
---|
121 | // calculate the axis of the ellipse wrt q-coord. |
---|
122 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
123 | nu = acos(cos_nu); |
---|
124 | |
---|
125 | // The following test should always pass |
---|
126 | if (fabs(cos_nu)>1.0) { |
---|
127 | printf("cyl_ana_2D: Unexpected error: cos(nu)>1\n"); |
---|
128 | return 0; |
---|
129 | } |
---|
130 | |
---|
131 | answer = elliptical_cylinder_kernel(pars, q, alpha, pars->cyl_psi,nu); |
---|
132 | |
---|
133 | // Multiply by contrast^2 |
---|
134 | answer *= pars->contrast*pars->contrast; |
---|
135 | |
---|
136 | //normalize by cylinder volume |
---|
137 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
138 | vol = acos(-1.0) * pars->r_minor * pars->r_minor * pars->r_ratio * pars->length; |
---|
139 | answer *= vol; |
---|
140 | |
---|
141 | //convert to [cm-1] |
---|
142 | answer *= 1.0e8; |
---|
143 | |
---|
144 | //Scale |
---|
145 | answer *= pars->scale; |
---|
146 | |
---|
147 | // add in the background |
---|
148 | answer += pars->background; |
---|
149 | |
---|
150 | return answer; |
---|
151 | } |
---|
152 | |
---|