#if !defined(cylinder_h) #define cylinder_h /** Structure definition for cylinder parameters * [PYTHONCLASS] = CylinderModel * [DISP_PARAMS] = radius, length, cyl_theta, cyl_phi [DESCRIPTION] = f(q)= 2*(sldCyl - sldSolv)*V*sin(qLcos(alpha/2)) /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)] P(q,alpha)= scale/V*f(q)^(2)+bkg V: Volume of the cylinder R: Radius of the cylinder L: Length of the cylinder J1: The bessel function alpha: angle betweenthe axis of the cylinder and the q-vector for 1D :the ouput is P(q)=scale/V*integral from pi/2 to zero of... f(q)^(2)*sin(alpha)*dalpha+ bkg [FIXED]= cyl_phi.width; cyl_theta.width; length.width;radius.width [ORIENTATION_PARAMS]= cyl_phi; cyl_theta; cyl_phi.width; cyl_theta.width **/ typedef struct { /// Scale factor // [DEFAULT]=scale=1.0 double scale; /// Radius of the cylinder [A] // [DEFAULT]=radius=20.0 [A] double radius; /// Length of the cylinder [A] // [DEFAULT]=length=400.0 [A] double length; /// Contrast [1/A^(2)] // [DEFAULT]=sldCyl=4.0e-6 [1/A^(2)] double sldCyl; /// sldCyl [1/A^(2)] // [DEFAULT]=sldSolv=1.0e-6 [1/A^(2)] double sldSolv; /// Incoherent Background [1/cm] 0.00 // [DEFAULT]=background=0.0 [1/cm] double background; /// Orientation of the cylinder axis w/respect incoming beam [rad] // [DEFAULT]=cyl_theta=1.0 [rad] double cyl_theta; /// Orientation of the cylinder in the plane of the detector [rad] // [DEFAULT]=cyl_phi=1.0 [rad] double cyl_phi; } CylinderParameters; /// 1D scattering function double cylinder_analytical_1D(CylinderParameters *pars, double q); /// 2D scattering function double cylinder_analytical_2D(CylinderParameters *pars, double q, double phi); double cylinder_analytical_2DXY(CylinderParameters *pars, double qx, double qy); double cylinder_analytical_2D_scaled(CylinderParameters *pars, double q, double q_x, double q_y); #endif