#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ../c_extensions/stacked_disks.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CStackedDisksModel import copy def create_StackedDisksModel(): obj = StackedDisksModel() #CStackedDisksModel.__init__(obj) is called by StackedDisksModel constructor return obj class StackedDisksModel(CStackedDisksModel, BaseComponent): """ Class that evaluates a StackedDisksModel model. This file was auto-generated from ../c_extensions/stacked_disks.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 0.01 radius = 3000.0 [A] core_thick = 10.0 [A] layer_thick = 15.0 [A] core_sld = 4e-06 [1/A^(2)] layer_sld = -4e-07 [1/A^(2)] solvent_sld = 5e-06 [1/A^(2)] n_stacking = 1.0 sigma_d = 0.0 background = 0.001 [1/cm] axis_theta = 0.0 [rad] axis_phi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CStackedDisksModel.__init__, (self,)) CStackedDisksModel.__init__(self) ## Name of the model self.name = "StackedDisksModel" ## Model description self.description =""" One layer of disk consists of a core, a top layer, and a bottom layer. radius = the radius of the disk core_thick = thickness of the core layer_thick = thickness of a layer core_sld = the SLD of the core layer_sld = the SLD of the layers n_stacking = the number of the disks sigma_d = Gaussian STD of d-spacing solvent_sld = the SLD of the solvent""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['radius'] = ['[A]', None, None] self.details['core_thick'] = ['[A]', None, None] self.details['layer_thick'] = ['[A]', None, None] self.details['core_sld'] = ['[1/A^(2)]', None, None] self.details['layer_sld'] = ['[1/A^(2)]', None, None] self.details['solvent_sld'] = ['[1/A^(2)]', None, None] self.details['n_stacking'] = ['', None, None] self.details['sigma_d'] = ['', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[rad]', None, None] self.details['axis_phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['core_thick.width', 'layer_thick.width', 'radius.width', 'axis_theta.width', 'axis_phi.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_StackedDisksModel,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(StackedDisksModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CStackedDisksModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CStackedDisksModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CStackedDisksModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CStackedDisksModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CStackedDisksModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file