#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\sc.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CSCCrystalModel import copy class SCCrystalModel(CSCCrystalModel, BaseComponent): """ Class that evaluates a SCCrystalModel model. This file was auto-generated from ..\c_extensions\sc.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 dnn = 220.0 [A] d_factor = 0.06 radius = 40.0 [A] sldSph = 3e-006 [1/A^(2)] sldSolv = 6.3e-006 [1/A^(2)] background = 0.0 [1/cm] theta = 0.0 [rad] phi = 0.0 [rad] psi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CSCCrystalModel.__init__(self) ## Name of the model self.name = "SCCrystalModel" ## Model description self.description ="""P(q)=(scale/Vp)*V_lattice*P(q)*Z(q)+bkg where scale is the volume fraction of sphere, Vp = volume of the primary particle, V_lattice = volume correction for for the crystal structure, P(q)= form factor of the sphere (normalized), Z(q)= paracrystalline structure factor for a simple cubic structure. [Simple Cubic ParaCrystal Model] Parameters; scale: volume fraction of spheres bkg:background, R: radius of sphere dnn: Nearest neighbor distance d_factor: Paracrystal distortion factor radius: radius of the spheres sldSph: SLD of the sphere sldSolv: SLD of the solvent """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['dnn'] = ['[A]', None, None] self.details['d_factor'] = ['', None, None] self.details['radius'] = ['[A]', None, None] self.details['sldSph'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['theta'] = ['[rad]', None, None] self.details['phi'] = ['[rad]', None, None] self.details['psi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['radius.width', 'phi.width', 'psi.width', 'theta.width'] ## non-fittable parameters self.non_fittable=[] ## parameters with orientation self.orientation_params =['phi', 'psi', 'theta', 'phi.width', 'psi.width', 'theta.width'] def clone(self): """ Return a identical copy of self """ return self._clone(SCCrystalModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CSCCrystalModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CSCCrystalModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CSCCrystalModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CSCCrystalModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CSCCrystalModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file