#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ../c_extensions/parallelepiped.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CParallelepipedModel import copy def create_ParallelepipedModel(): obj = ParallelepipedModel() #CParallelepipedModel.__init__(obj) is called by ParallelepipedModel constructor return obj class ParallelepipedModel(CParallelepipedModel, BaseComponent): """ Class that evaluates a ParallelepipedModel model. This file was auto-generated from ../c_extensions/parallelepiped.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 short_a = 35.0 [A] short_b = 75.0 [A] long_c = 400.0 [A] sldPipe = 6.3e-06 [1/A^(2)] sldSolv = 1e-06 [1/A^(2)] background = 0.0 [1/cm] parallel_theta = 0.0 [deg] parallel_phi = 0.0 [deg] parallel_psi = 0.0 [deg] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CParallelepipedModel.__init__, (self,)) CParallelepipedModel.__init__(self) ## Name of the model self.name = "ParallelepipedModel" ## Model description self.description =""" Form factor for a rectangular solid with uniform scattering length density. scale:Scale factor short_a: length of short edge [A] short_b: length of another short edge [A] long_c: length of long edge of the parallelepiped [A] sldPipe: Pipe_sld sldSolv: solvent_sld background:Incoherent Background [1/cm]""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['short_a'] = ['[A]', None, None] self.details['short_b'] = ['[A]', None, None] self.details['long_c'] = ['[A]', None, None] self.details['sldPipe'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['parallel_theta'] = ['[deg]', None, None] self.details['parallel_phi'] = ['[deg]', None, None] self.details['parallel_psi'] = ['[deg]', None, None] ## fittable parameters self.fixed=['short_a.width', 'short_b.width', 'long_c.width', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['parallel_phi', 'parallel_psi', 'parallel_theta', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width'] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_ParallelepipedModel,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(ParallelepipedModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CParallelepipedModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CParallelepipedModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CParallelepipedModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CParallelepipedModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CParallelepipedModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file