#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\onion.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import COnionModel import copy class OnionModel(COnionModel, BaseComponent): """ Class that evaluates a OnionModel model. This file was auto-generated from ..\c_extensions\onion.h. Refer to that file and the structure it contains for details of the model. List of default parameters: n_shells = 1.0 scale = 1.0 rad_core = 200.0 [A] sld_core = 1e-006 [1/A^(2)] sld_solv = 6.4e-006 [1/A^(2)] background = 0.0 [1/cm] sld_out_shell1 = 2e-006 [1/A^(2)] sld_out_shell2 = 2.5e-006 [1/A^(2)] sld_out_shell3 = 3e-006 [1/A^(2)] sld_out_shell4 = 3.5e-006 [1/A^(2)] sld_out_shell5 = 4e-006 [1/A^(2)] sld_out_shell6 = 4.5e-006 [1/A^(2)] sld_out_shell7 = 5e-006 [1/A^(2)] sld_out_shell8 = 5.5e-006 [1/A^(2)] sld_out_shell9 = 6e-006 [1/A^(2)] sld_out_shell10 = 6.2e-006 [1/A^(2)] sld_in_shell1 = 1.7e-006 [1/A^(2)] sld_in_shell2 = 2.2e-006 [1/A^(2)] sld_in_shell3 = 2.7e-006 [1/A^(2)] sld_in_shell4 = 3.2e-006 [1/A^(2)] sld_in_shell5 = 3.7e-006 [1/A^(2)] sld_in_shell6 = 4.2e-006 [1/A^(2)] sld_in_shell7 = 4.7e-006 [1/A^(2)] sld_in_shell8 = 5.2e-006 [1/A^(2)] sld_in_shell9 = 5.7e-006 [1/A^(2)] sld_in_shell10 = 6e-006 [1/A^(2)] A_shell1 = 1.0 A_shell2 = 1.0 A_shell3 = 1.0 A_shell4 = 1.0 A_shell5 = 1.0 A_shell6 = 1.0 A_shell7 = 1.0 A_shell8 = 1.0 A_shell9 = 1.0 A_shell10 = 1.0 thick_shell1 = 50.0 [A] thick_shell2 = 50.0 [A] thick_shell3 = 50.0 [A] thick_shell4 = 50.0 [A] thick_shell5 = 50.0 [A] thick_shell6 = 50.0 [A] thick_shell7 = 50.0 [A] thick_shell8 = 50.0 [A] thick_shell9 = 50.0 [A] thick_shell10 = 50.0 [A] func_shell1 = 2.0 func_shell2 = 2.0 func_shell3 = 2.0 func_shell4 = 2.0 func_shell5 = 2.0 func_shell6 = 2.0 func_shell7 = 2.0 func_shell8 = 2.0 func_shell9 = 2.0 func_shell10 = 2.0 """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) COnionModel.__init__(self) ## Name of the model self.name = "OnionModel" ## Model description self.description ="""Form factor of mutishells normalized by the volume. Here each shell is described by an exponential function; I) For A_shell != 0, f(r) = B*exp(A_shell*(r-r_in)/thick_shell)+C where B=(sld_out-sld_in)/(exp(A_shell)-1) C=sld_in-B. Note that in the above case, the function becomes a linear function as A_shell --> 0+ or 0-. II) For the exact point of A_shell == 0, f(r) = sld_in ,i.e., it crosses over flat function Note that the 'sld_out' becaomes NULL in this case. background:background, rad_core: radius of sphere(core) thick_shell#:the thickness of the shell# sld_core: the SLD of the sphere sld_solv: the SLD of the solvent sld_shell: the SLD of the shell# A_shell#: the coefficient in the exponential function""" ## Parameter details [units, min, max] self.details = {} self.details['n_shells'] = ['', None, None] self.details['scale'] = ['', None, None] self.details['rad_core'] = ['[A]', None, None] self.details['sld_core'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['sld_out_shell1'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell2'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell3'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell4'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell5'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell6'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell7'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell8'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell9'] = ['[1/A^(2)]', None, None] self.details['sld_out_shell10'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell1'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell2'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell3'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell4'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell5'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell6'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell7'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell8'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell9'] = ['[1/A^(2)]', None, None] self.details['sld_in_shell10'] = ['[1/A^(2)]', None, None] self.details['A_shell1'] = ['', None, None] self.details['A_shell2'] = ['', None, None] self.details['A_shell3'] = ['', None, None] self.details['A_shell4'] = ['', None, None] self.details['A_shell5'] = ['', None, None] self.details['A_shell6'] = ['', None, None] self.details['A_shell7'] = ['', None, None] self.details['A_shell8'] = ['', None, None] self.details['A_shell9'] = ['', None, None] self.details['A_shell10'] = ['', None, None] self.details['thick_shell1'] = ['[A]', None, None] self.details['thick_shell2'] = ['[A]', None, None] self.details['thick_shell3'] = ['[A]', None, None] self.details['thick_shell4'] = ['[A]', None, None] self.details['thick_shell5'] = ['[A]', None, None] self.details['thick_shell6'] = ['[A]', None, None] self.details['thick_shell7'] = ['[A]', None, None] self.details['thick_shell8'] = ['[A]', None, None] self.details['thick_shell9'] = ['[A]', None, None] self.details['thick_shell10'] = ['[A]', None, None] self.details['func_shell1'] = ['', None, None] self.details['func_shell2'] = ['', None, None] self.details['func_shell3'] = ['', None, None] self.details['func_shell4'] = ['', None, None] self.details['func_shell5'] = ['', None, None] self.details['func_shell6'] = ['', None, None] self.details['func_shell7'] = ['', None, None] self.details['func_shell8'] = ['', None, None] self.details['func_shell9'] = ['', None, None] self.details['func_shell10'] = ['', None, None] ## fittable parameters self.fixed=['rad_core.width', 'thick_shell1.width', 'thick_shell2.width', 'thick_shell3.width', 'thick_shell4.width', 'thick_shell5.width', 'thick_shell6.width', 'thick_shell7.width', 'thick_shell8.width', 'thick_shell9.width', 'thick_shell10.width'] ## parameters with orientation self.orientation_params =[] def clone(self): """ Return a identical copy of self """ return self._clone(OnionModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return COnionModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return COnionModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return COnionModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return COnionModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return COnionModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file