#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import COblateModel import copy def create_OblateModel(): obj = OblateModel() #COblateModel.__init__(obj) is called by OblateModel constructor return obj class OblateModel(COblateModel, BaseComponent): """ Class that evaluates a OblateModel model. This file was auto-generated from ..\c_extensions\oblate.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 major_core = 200.0 [A] minor_core = 20.0 [A] major_shell = 250.0 [A] minor_shell = 30.0 [A] contrast = 1e-006 [1/A^(2)] sld_solvent = 6.3e-006 [1/A^(2)] background = 0.001 [1/cm] axis_theta = 57.325 [deg] axis_phi = 57.325 [deg] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(COblateModel.__init__, (self,)) COblateModel.__init__(self) ## Name of the model self.name = "OblateModel" ## Model description self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate ellipsoid particle with a core_shell structure. The form factor is averaged over all possible orientations of the ellipsoid such that P(q) = scale*/Vol + bkg, where f is the single particle scattering amplitude. [Parameters]: major_core = radius of major_core, minor_core = radius of minor_core, major_shell = radius of major_shell, minor_shell = radius of minor_shell, contrast = SLD_core - SLD_shell sld_solvent = SLD_solvent background = Incoherent bkg scale =scale Note:It is the users' responsibility to ensure that shell radii are larger than core radii.""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['major_core'] = ['[A]', None, None] self.details['minor_core'] = ['[A]', None, None] self.details['major_shell'] = ['[A]', None, None] self.details['minor_shell'] = ['[A]', None, None] self.details['contrast'] = ['[1/A^(2)]', None, None] self.details['sld_solvent'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[deg]', None, None] self.details['axis_phi'] = ['[deg]', None, None] ## fittable parameters self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ return (create_OblateModel,tuple()) def clone(self): """ Return a identical copy of self """ return self._clone(OblateModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return COblateModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return COblateModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return COblateModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return COblateModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return COblateModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file