#!/usr/bin/env python """ This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee """ """ Provide functionality for a C extension model WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import COblateModel import copy class OblateModel(COblateModel, BaseComponent): """ Class that evaluates a OblateModel model. This file was auto-generated from ..\c_extensions\oblate.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 major_core = 200.0 [A] minor_core = 20.0 [A] major_shell = 250.0 [A] minor_shell = 30.0 [A] contrast = 1e-006 [1/AČ] sld_solvent = 6.3e-006 [1/AČ] background = 0.001 [1/cm] axis_theta = 1.0 [rad] axis_phi = 1.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) COblateModel.__init__(self) ## Name of the model self.name = "OblateModel" ## Model description self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate ellipsoid particle with a core_shell structure. The form factor is averaged over all possible orientations of the ellipsoid such that P(q) = scale*/Vol + bkg, where f is the single particle scattering amplitude. [Parameters]: major_core = radius of major_core, minor_core = radius of minor_core, major_shell = radius of major_shell, minor_shell = radius of minor_shell, contrast = SLD_core - SLD_shell sld_solvent = SLD_solvent background = Incoherent bkg scale =scale Note:It is the users' responsibility to ensure that shell radii are larger than core radii.""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['major_core'] = ['[A]', None, None] self.details['minor_core'] = ['[A]', None, None] self.details['major_shell'] = ['[A]', None, None] self.details['minor_shell'] = ['[A]', None, None] self.details['contrast'] = ['[1/AČ]', None, None] self.details['sld_solvent'] = ['[1/AČ]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[rad]', None, None] self.details['axis_phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width'] ## parameters with orientation self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def clone(self): """ Return a identical copy of self """ return self._clone(OblateModel()) def run(self, x = 0.0): """ Evaluate the model @param x: input q, or [q,phi] @return: scattering function P(q) """ return COblateModel.run(self, x) def runXY(self, x = 0.0): """ Evaluate the model in cartesian coordinates @param x: input q, or [qx, qy] @return: scattering function P(q) """ return COblateModel.runXY(self, x) def evalDistribition(self, x = []): """ Evaluate the model in cartesian coordinates @param x: input q[], or [qx[], qy[]] @return: scattering function P(q[]) """ return COblateModel.evalDistribition(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) @return: the value of the effective radius """ return COblateModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter @param parameter: name of the parameter [string] @dispersion: dispersion object of type DispersionModel """ return COblateModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file