#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ../c_extensions/lamellarPS.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CLamellarPSModel import copy def create_LamellarPSModel(): obj = LamellarPSModel() #CLamellarPSModel.__init__(obj) is called by LamellarPSModel constructor return obj class LamellarPSModel(CLamellarPSModel, BaseComponent): """ Class that evaluates a LamellarPSModel model. This file was auto-generated from ../c_extensions/lamellarPS.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 spacing = 400.0 [A] delta = 30.0 [A] sld_bi = 6.3e-06 [1/A^(2)] sld_sol = 1e-06 [1/A^(2)] n_plates = 20.0 caille = 0.1 background = 0.0 [1/cm] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CLamellarPSModel.__init__, (self,)) CLamellarPSModel.__init__(self) ## Name of the model self.name = "LamellarPSModel" ## Model description self.description ="""[Concentrated Lamellar Form Factor] Calculates the scattered intensity from a lyotropic lamellar phase. The intensity (form factor and structure factor)calculated is for lamellae of uniform scattering length density that are randomly distributed in solution (a powder average). The lamellae thickness is polydisperse. The model can also be applied to large, multi-lamellar vesicles. No resolution smeared version is included in the structure factor of this model. *Parameters: spacing = repeat spacing, delta = bilayer thickness, sld_bi = SLD_bilayer sld_sol = SLD_solvent n_plate = # of Lamellar plates caille = Caille parameter (<0.8 or <1) background = incoherent bgd scale = scale factor""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['spacing'] = ['[A]', None, None] self.details['delta'] = ['[A]', None, None] self.details['sld_bi'] = ['[1/A^(2)]', None, None] self.details['sld_sol'] = ['[1/A^(2)]', None, None] self.details['n_plates'] = ['', None, None] self.details['caille'] = ['', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed=['delta.width', 'spacing.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_LamellarPSModel,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(LamellarPSModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CLamellarPSModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CLamellarPSModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CLamellarPSModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CLamellarPSModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CLamellarPSModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file