#!/usr/bin/env python """ This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee """ """ Provide functionality for a C extension model WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY c:\ECLPS\workspace\trunk\sansmodels\src\sans\models\c_extensions\HayterMSA.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CHayterMSAStructure import copy class HayterMSAStructure(CHayterMSAStructure, BaseComponent): """ Class that evaluates a HayterMSAStructure model. This file was auto-generated from c:\ECLPS\workspace\trunk\sansmodels\src\sans\models\c_extensions\HayterMSA.h. Refer to that file and the structure it contains for details of the model. List of default parameters: radius = 20.75 A charge = 19.0 volfraction = 0.0192 temperature = 318.16 K saltconc = 0.0 dielectconst = 71.08 """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CHayterMSAStructure.__init__(self) ## Name of the model self.name = "HayterMSAStructure" ## Model description self.description ="""To calculate the structure factor (the Fourier transform of the pair correlation function g(r)) for a system of charged, spheroidal objects in a dielectric medium. When combined with an appropriate form factor, this allows for inclusion of the interparticle interference effects due to screened coulomb repulsion between charged particles. (note: charge > 0 required.) Ref: JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982). """ ## Parameter details [units, min, max] self.details = {} self.details['radius'] = ['A', None, None] self.details['charge'] = ['', None, None] self.details['volfraction'] = ['', None, None] self.details['temperature'] = ['K', None, None] self.details['saltconc'] = ['', None, None] self.details['dielectconst'] = ['', None, None] ## fittable parameters self.fixed=['radius.width'] def clone(self): """ Return a identical copy of self """ return self._clone(HayterMSAStructure()) def run(self, x = 0.0): """ Evaluate the model @param x: input q, or [q,phi] @return: scattering function P(q) """ return CHayterMSAStructure.run(self, x) def runXY(self, x = 0.0): """ Evaluate the model in cartesian coordinates @param x: input q, or [qx, qy] @return: scattering function P(q) """ return CHayterMSAStructure.runXY(self, x) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter @param parameter: name of the parameter [string] @dispersion: dispersion object of type DispersionModel """ return CHayterMSAStructure.set_dispersion(self, parameter, dispersion.cdisp) # End of file