#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\Hardsphere.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CHardsphereStructure import copy def create_HardsphereStructure(): obj = HardsphereStructure() #CHardsphereStructure.__init__(obj) is called by HardsphereStructure constructor return obj class HardsphereStructure(CHardsphereStructure, BaseComponent): """ Class that evaluates a HardsphereStructure model. This file was auto-generated from ..\c_extensions\Hardsphere.h. Refer to that file and the structure it contains for details of the model. List of default parameters: effect_radius = 50.0 [A] volfraction = 0.2 """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CHardsphereStructure.__init__, (self,)) CHardsphereStructure.__init__(self) ## Name of the model self.name = "HardsphereStructure" ## Model description self.description ="""Structure factor for interacting particles: . The interparticle potential is U(r)= inf , r < 2R = 0 , r >= 2R R: effective radius of the Hardsphere particle V:The volume fraction Ref: Percus., J. K.,etc., J. Phy. Rev. 1958, 110, 1.""" ## Parameter details [units, min, max] self.details = {} self.details['effect_radius'] = ['[A]', None, None] self.details['volfraction'] = ['', None, None] ## fittable parameters self.fixed=['effect_radius.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ return (create_HardsphereStructure,tuple()) def clone(self): """ Return a identical copy of self """ return self._clone(HardsphereStructure()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CHardsphereStructure.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CHardsphereStructure.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CHardsphereStructure.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CHardsphereStructure.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CHardsphereStructure.set_dispersion(self, parameter, dispersion.cdisp) # End of file