#!/usr/bin/env python """ This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee """ """ Provide functionality for a C extension model WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CEllipsoidModel import copy class EllipsoidModel(CEllipsoidModel, BaseComponent): """ Class that evaluates a EllipsoidModel model. This file was auto-generated from ..\c_extensions\ellipsoid.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 radius_a = 20.0 [A] radius_b = 400.0 [A] contrast = 3e-006 [1/AČ] background = 0.0 [1/cm] axis_theta = 1.57 [rad] axis_phi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CEllipsoidModel.__init__(self) ## Name of the model self.name = "EllipsoidModel" ## Model description self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(scatter_sld - scatter_solvent)*V*[sin(q*r(Ra,Rb,alpha)) -q*r*cos(qr(Ra,Rb,alpha))] /[qr(Ra,Rb,alpha)]^(3)" r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) + Ra^(2)*(cos(alpha))^(2)]^(1/2) scatter_sld: SLD of the scatter solvent_sld: SLD of the solvent contrast: SLD difference between scatter and solvent V: volune of the Eliipsoid Ra: radius along the rotation axis of the Ellipsoid Rb: radius perpendicular to the rotation axis of the ellipsoid""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['radius_a'] = ['[A]', None, None] self.details['radius_b'] = ['[A]', None, None] self.details['contrast'] = ['[1/AČ]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[rad]', None, None] self.details['axis_phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width'] ## parameters with orientation self.orientation_params =['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta'] def clone(self): """ Return a identical copy of self """ return self._clone(EllipsoidModel()) def run(self, x = 0.0): """ Evaluate the model @param x: input q, or [q,phi] @return: scattering function P(q) """ return CEllipsoidModel.run(self, x) def runXY(self, x = 0.0): """ Evaluate the model in cartesian coordinates @param x: input q, or [qx, qy] @return: scattering function P(q) """ return CEllipsoidModel.runXY(self, x) def evalDistribition(self, x = []): """ Evaluate the model in cartesian coordinates @param x: input q[], or [qx[], qy[]] @return: scattering function P(q[]) """ return CEllipsoidModel.evalDistribition(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) @return: the value of the effective radius """ return CEllipsoidModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter @param parameter: name of the parameter [string] @dispersion: dispersion object of type DispersionModel """ return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file