#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ../c_extensions/DiamEllip.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CDiamEllipFunc import copy def create_DiamEllipFunc(): obj = DiamEllipFunc() #CDiamEllipFunc.__init__(obj) is called by DiamEllipFunc constructor return obj class DiamEllipFunc(CDiamEllipFunc, BaseComponent): """ Class that evaluates a DiamEllipFunc model. This file was auto-generated from ../c_extensions/DiamEllip.h. Refer to that file and the structure it contains for details of the model. List of default parameters: radius_a = 20.0 A radius_b = 400.0 A """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CDiamEllipFunc.__init__, (self,)) CDiamEllipFunc.__init__(self) ## Name of the model self.name = "DiamEllipFunc" ## Model description self.description ="""To calculate the 2nd virial coefficient for the non-spherical object, then find the radius of sphere that has this value of virial coefficient: radius_a = polar radius, radius_b = equatorial radius; radius_a > radius_b: Prolate spheroid, radius_a < radius_b: Oblate spheroid.""" ## Parameter details [units, min, max] self.details = {} self.details['radius_a'] = ['A', None, None] self.details['radius_b'] = ['A', None, None] ## fittable parameters self.fixed=['radius_a.width', 'radius_b.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = [] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_DiamEllipFunc,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(DiamEllipFunc()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CDiamEllipFunc.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CDiamEllipFunc.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CDiamEllipFunc.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CDiamEllipFunc.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CDiamEllipFunc.set_dispersion(self, parameter, dispersion.cdisp) # End of file