#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\DiamEllip.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CDiamEllipFunc import copy class DiamEllipFunc(CDiamEllipFunc, BaseComponent): """ Class that evaluates a DiamEllipFunc model. This file was auto-generated from ..\c_extensions\DiamEllip.h. Refer to that file and the structure it contains for details of the model. List of default parameters: radius_a = 20.0 A radius_b = 400.0 A """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CDiamEllipFunc.__init__(self) ## Name of the model self.name = "DiamEllipFunc" ## Model description self.description ="""To calculate the 2nd virial coefficient for the non-spherical object, then find the radius of sphere that has this value of virial coefficient: radius_a = polar radius, radius_b = equatorial radius; radius_a > radius_b: Prolate spheroid, radius_a < radius_b: Oblate spheroid.""" ## Parameter details [units, min, max] self.details = {} self.details['radius_a'] = ['A', None, None] self.details['radius_b'] = ['A', None, None] ## fittable parameters self.fixed=['radius_a.width', 'radius_b.width'] ## non-fittable parameters self.non_fittable=[] ## parameters with orientation self.orientation_params =[] def clone(self): """ Return a identical copy of self """ return self._clone(DiamEllipFunc()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CDiamEllipFunc.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CDiamEllipFunc.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CDiamEllipFunc.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CDiamEllipFunc.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CDiamEllipFunc.set_dispersion(self, parameter, dispersion.cdisp) # End of file