#!/usr/bin/env python """ Provide F(x) = scale/( 1 + (x*L)^2 )^(2) + background DAB (Debye Anderson Brumberger) function as a BaseComponent model """ from sans.models.BaseComponent import BaseComponent import math class DABModel(BaseComponent): """ Class that evaluates a DAB model. F(x) = scale*(L^3)/( 1 + (x*L)^2 )^(2) + background The model has three parameters: L = Correlation Length scale = scale factor background = incoherent background """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) ## Name of the model self.name = "DAB_Model" self.description = """ F(x) = scale*(L^3)/( 1 + (x*L)^2 )^(2) + background The model has three parameters: L = Correlation Length scale = scale factor background = incoherent background""" ## Define parameters self.params = {} self.params['length'] = 50.0 self.params['scale'] = 1.0 self.params['background'] = 0.0 ## Parameter details [units, min, max] self.details = {} self.details['length'] = ['[A]', None, None] self.details['scale'] = ['', None, None] self.details['background'] = ['[1/cm]', None, None] #list of parameter that cannot be fitted self.fixed = [] def _DAB(self, x): """ Evaluate F(x) = (scale*L^3)/( 1 + (x*L)^2 )^(2) + background """ # According to SRK (Igor/NIST code: 6 JUL 2009 changed definition # of 'scale' to be uncorrelated with 'length') return self.params['scale']*math.pow(self.params['length'], 3)/\ math.pow(( 1 + math.pow(x * self.params['length'], 2)), 2) \ + self.params['background'] def run(self, x = 0.0): """ Evaluate the model @param x: input q-value (float or [float, float] as [r, theta]) @return: (DAB value) """ if x.__class__.__name__ == 'list': return self._DAB(x[0]) elif x.__class__.__name__ == 'tuple': raise ValueError, "Tuples are not allowed as input to models" else: return self._DAB(x) def runXY(self, x = 0.0): """ Evaluate the model @param x: input q-value (float or [float, float] as [qx, qy]) @return: DAB value """ if x.__class__.__name__ == 'list': q = math.sqrt(x[0]**2 + x[1]**2) return self._DAB(q) elif x.__class__.__name__ == 'tuple': raise ValueError, "Tuples are not allowed as input to models" else: return self._DAB(x)