#!/usr/bin/env python """ This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee """ """ Provide functionality for a C extension model WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\spheroid.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCoreShellEllipsoidModel import copy class CoreShellEllipsoidModel(CCoreShellEllipsoidModel, BaseComponent): """ Class that evaluates a CoreShellEllipsoidModel model. This file was auto-generated from ..\c_extensions\spheroid.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 equat_core = 200.0 [A] polar_core = 20.0 [A] equat_shell = 250.0 [A] polar_shell = 30.0 [A] contrast = 1e-006 [1/A^(2)] sld_solvent = 6.3e-006 [1/A^(2)] background = 0.001 [1/cm] axis_theta = 0.0 [rad] axis_phi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CCoreShellEllipsoidModel.__init__(self) ## Name of the model self.name = "CoreShellEllipsoidModel" ## Model description self.description ="""[SpheroidCoreShellModel] Calculates the form factor for an spheroid ellipsoid particle with a core_shell structure. The form factor is averaged over all possible orientations of the ellipsoid such that P(q) = scale*/Vol + bkg, where f is the single particle scattering amplitude. [Parameters]: equat_core = equatorial radius of core, polar_core = polar radius of core, equat_shell = equatorial radius of shell, polar_shell = polar radius (revolution axis) of shell, contrast = SLD_core - SLD_shell sld_solvent = SLD_solvent background = Incoherent bkg scale =scale Note:It is the users' responsibility to ensure that shell radii are larger than core radii. oblate: polar radius < equatorial radius prolate : polar radius > equatorial radius""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['equat_core'] = ['[A]', None, None] self.details['polar_core'] = ['[A]', None, None] self.details['equat_shell'] = ['[A]', None, None] self.details['polar_shell'] = ['[A]', None, None] self.details['contrast'] = ['[1/A^(2)]', None, None] self.details['sld_solvent'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[rad]', None, None] self.details['axis_phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['equat_core.width', 'polar_core.width', 'equat_shell.width', 'polar_shell.width', 'axis_phi.width', 'axis_theta.width'] ## parameters with orientation self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellEllipsoidModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x = 0.0): """ Evaluate the model @param x: input q, or [q,phi] @return: scattering function P(q) """ return CCoreShellEllipsoidModel.run(self, x) def runXY(self, x = 0.0): """ Evaluate the model in cartesian coordinates @param x: input q, or [qx, qy] @return: scattering function P(q) """ return CCoreShellEllipsoidModel.runXY(self, x) def evalDistribution(self, x = []): """ Evaluate the model in cartesian coordinates @param x: input q[], or [qx[], qy[]] @return: scattering function P(q[]) """ return CCoreShellEllipsoidModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) @return: the value of the effective radius """ return CCoreShellEllipsoidModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter @param parameter: name of the parameter [string] @dispersion: dispersion object of type DispersionModel """ return CCoreShellEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file