#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\spheroid.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCoreShellEllipsoidModel import copy class CoreShellEllipsoidModel(CCoreShellEllipsoidModel, BaseComponent): """ Class that evaluates a CoreShellEllipsoidModel model. This file was auto-generated from ..\c_extensions\spheroid.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 equat_core = 200.0 [A] polar_core = 20.0 [A] equat_shell = 250.0 [A] polar_shell = 30.0 [A] sld_core = 2e-006 [1/A^(2)] sld_shell = 1e-006 [1/A^(2)] sld_solvent = 6.3e-006 [1/A^(2)] background = 0.001 [1/cm] axis_theta = 0.0 [rad] axis_phi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CCoreShellEllipsoidModel.__init__(self) ## Name of the model self.name = "CoreShellEllipsoidModel" ## Model description self.description ="""[SpheroidCoreShellModel] Calculates the form factor for an spheroid ellipsoid particle with a core_shell structure. The form factor is averaged over all possible orientations of the ellipsoid such that P(q) = scale*/Vol + bkg, where f is the single particle scattering amplitude. [Parameters]: equat_core = equatorial radius of core, polar_core = polar radius of core, equat_shell = equatorial radius of shell, polar_shell = polar radius (revolution axis) of shell, sld_core = SLD_core sld_shell = SLD_shell sld_solvent = SLD_solvent background = Incoherent bkg scale =scale Note:It is the users' responsibility to ensure that shell radii are larger than core radii. oblate: polar radius < equatorial radius prolate : polar radius > equatorial radius""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['equat_core'] = ['[A]', None, None] self.details['polar_core'] = ['[A]', None, None] self.details['equat_shell'] = ['[A]', None, None] self.details['polar_shell'] = ['[A]', None, None] self.details['sld_core'] = ['[1/A^(2)]', None, None] self.details['sld_shell'] = ['[1/A^(2)]', None, None] self.details['sld_solvent'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[rad]', None, None] self.details['axis_phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['equat_core.width', 'polar_core.width', 'equat_shell.width', 'polar_shell.width', 'axis_phi.width', 'axis_theta.width'] ## parameters with orientation self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellEllipsoidModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreShellEllipsoidModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreShellEllipsoidModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreShellEllipsoidModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreShellEllipsoidModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreShellEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file