#!/usr/bin/env python """ This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee """ """ Provide functionality for a C extension model WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\core_shell_cylinder.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCoreShellCylinderModel import copy class CoreShellCylinderModel(CCoreShellCylinderModel, BaseComponent): """ Class that evaluates a CoreShellCylinderModel model. This file was auto-generated from ..\c_extensions\core_shell_cylinder.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 radius = 20.0 A thickness = 10.0 A length = 400.0 A core_sld = 1e-006 A-2 shell_sld = 4e-006 A-2 solvent_sld = 1e-006 A-2 background = 0.0 cm-1 axis_theta = 1.57 rad axis_phi = 0.0 rad """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CCoreShellCylinderModel.__init__(self) ## Name of the model self.name = "CoreShellCylinderModel" ## Model description self.description ="""P(q,alpha)= scale/Vs*f(q)^(2) + bkg Where:\n\ f(q)= 2(core_sld- solvant_sld)* Vc*sin[qLcos(alpha/2)]/\n\ [qLcos(alpha/2)]*J1(qRsin(alpha))/[qRsin(alpha)] +\n 2(shell_sld-solvent_sld)*Vs *sin[q(L+T)cos(alpha/2)]/[[q(L+T)cos(alpha/2)] *J1(q(R+T)sin(alpha))/q(R+T)sin(alpha)] alpha:is the angle between the axis of the cylinder and the q-vector Vs: the volume of the outer shell Vc: the volume of the core L: the length of the core shell_sld: the scattering length density of the shell solvent_sld: the scattering length density of the solvent bkg: the background T: the thickness R+T: is the outer radius L+2T: The total length of the outershell J1: the first order Bessel function theta: axis_theta of the cylinder phi: the axis_phi of the cylinder""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['radius'] = ['A', None, None] self.details['thickness'] = ['A', None, None] self.details['length'] = ['A', None, None] self.details['core_sld'] = ['A-2', None, None] self.details['shell_sld'] = ['A-2', None, None] self.details['solvent_sld'] = ['A-2', None, None] self.details['background'] = ['cm-1', None, None] self.details['axis_theta'] = ['rad', None, None] self.details['axis_phi'] = ['rad', None, None] ## fittable parameters self.fixed=['axis_phi.width', 'axis_theta.width', 'length.width', 'radius.width', 'thickness_width'] def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellCylinderModel()) def run(self, x = 0.0): """ Evaluate the model @param x: input q, or [q,phi] @return: scattering function P(q) """ return CCoreShellCylinderModel.run(self, x) def runXY(self, x = 0.0): """ Evaluate the model in cartesian coordinates @param x: input q, or [qx, qy] @return: scattering function P(q) """ return CCoreShellCylinderModel.runXY(self, x) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter @param parameter: name of the parameter [string] @dispersion: dispersion object of type DispersionModel """ return CCoreShellCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file