#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\core_shell_cylinder.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCoreShellCylinderModel import copy def create_CoreShellCylinderModel(): obj = CoreShellCylinderModel() #CCoreShellCylinderModel.__init__(obj) is called by CoreShellCylinderModel constructor return obj class CoreShellCylinderModel(CCoreShellCylinderModel, BaseComponent): """ Class that evaluates a CoreShellCylinderModel model. This file was auto-generated from ..\c_extensions\core_shell_cylinder.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 radius = 20.0 [A] thickness = 10.0 [A] length = 400.0 [A] core_sld = 1e-006 [1/A^(2)] shell_sld = 4e-006 [1/A^(2)] solvent_sld = 1e-006 [1/A^(2)] background = 0.0 [1/cm] axis_theta = 90.0 [deg] axis_phi = 0.0 [deg] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CCoreShellCylinderModel.__init__, (self,)) CCoreShellCylinderModel.__init__(self) ## Name of the model self.name = "CoreShellCylinderModel" ## Model description self.description ="""P(q,alpha)= scale/Vs*f(q)^(2) + bkg, where: f(q)= 2(core_sld - solvant_sld)* Vc*sin[qLcos(alpha/2)] /[qLcos(alpha/2)]*J1(qRsin(alpha)) /[qRsin(alpha)]+2(shell_sld-solvent_sld) *Vs*sin[q(L+T)cos(alpha/2)][[q(L+T) *cos(alpha/2)]*J1(q(R+T)sin(alpha)) /q(R+T)sin(alpha)] alpha:is the angle between the axis of the cylinder and the q-vector Vs: the volume of the outer shell Vc: the volume of the core L: the length of the core shell_sld: the scattering length density of the shell solvent_sld: the scattering length density of the solvent bkg: the background T: the thickness R+T: is the outer radius L+2T: The total length of the outershell J1: the first order Bessel function theta: axis_theta of the cylinder phi: the axis_phi of the cylinder...""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['radius'] = ['[A]', None, None] self.details['thickness'] = ['[A]', None, None] self.details['length'] = ['[A]', None, None] self.details['core_sld'] = ['[1/A^(2)]', None, None] self.details['shell_sld'] = ['[1/A^(2)]', None, None] self.details['solvent_sld'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['axis_theta'] = ['[deg]', None, None] self.details['axis_phi'] = ['[deg]', None, None] ## fittable parameters self.fixed=['axis_phi.width', 'axis_theta.width', 'length.width', 'radius.width', 'thickness.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_CoreShellCylinderModel,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(CoreShellCylinderModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreShellCylinderModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreShellCylinderModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreShellCylinderModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreShellCylinderModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreShellCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file