#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\corefourshell.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCoreFourShellModel import copy class CoreFourShellModel(CCoreFourShellModel, BaseComponent): """ Class that evaluates a CoreFourShellModel model. This file was auto-generated from ..\c_extensions\corefourshell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 rad_core = 60.0 [A] sld_core = 6.4e-006 [1/A^(2)] thick_shell1 = 10.0 [A] sld_shell1 = 1e-006 [1/A^(2)] thick_shell2 = 10.0 [A] sld_shell2 = 2e-006 [1/A^(2)] thick_shell3 = 10.0 [A] sld_shell3 = 3e-006 [1/A^(2)] thick_shell4 = 10.0 [A] sld_shell4 = 4e-006 [1/A^(2)] sld_solv = 6.4e-006 [1/A^(2)] background = 0.001 [1/cm] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CCoreFourShellModel.__init__(self) ## Name of the model self.name = "CoreFourShellModel" ## Model description self.description =""" Calculates the scattering intensity from a core-4 shell structure. scale = scale factor * volume fraction rad_core: the radius of the core sld_core: the SLD of the core thick_shelli: the thickness of the i'th shell from the core sld_shelli: the SLD of the i'th shell from the core sld_solv: the SLD of the solvent background: incoherent background""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['rad_core'] = ['[A]', None, None] self.details['sld_core'] = ['[1/A^(2)]', None, None] self.details['thick_shell1'] = ['[A]', None, None] self.details['sld_shell1'] = ['[1/A^(2)]', None, None] self.details['thick_shell2'] = ['[A]', None, None] self.details['sld_shell2'] = ['[1/A^(2)]', None, None] self.details['thick_shell3'] = ['[A]', None, None] self.details['sld_shell3'] = ['[1/A^(2)]', None, None] self.details['thick_shell4'] = ['[A]', None, None] self.details['sld_shell4'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] ## fittable parameters self.fixed=['thick_shell4.width', 'thick_shell1.width', 'thick_shell2.width', 'thick_shell3.width', 'rad_core.width'] ## parameters with orientation self.orientation_params =[] def clone(self): """ Return a identical copy of self """ return self._clone(CoreFourShellModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCoreFourShellModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCoreFourShellModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCoreFourShellModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCoreFourShellModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCoreFourShellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file