#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\capcyl.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans_extension.c_models import CCappedCylinderModel import copy class CappedCylinderModel(CCappedCylinderModel, BaseComponent): """ Class that evaluates a CappedCylinderModel model. This file was auto-generated from ..\c_extensions\capcyl.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 rad_cyl = 20.0 [A] len_cyl = 400.0 [A] rad_cap = 40.0 [A] sld_capcyl = 1e-006 [1/A^(2)] sld_solv = 6.3e-006 [1/A^(2)] background = 0.0 [1/cm] theta = 0.0 [rad] phi = 0.0 [rad] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) CCappedCylinderModel.__init__(self) ## Name of the model self.name = "CappedCylinderModel" ## Model description self.description ="""Calculates the scattering from a cylinder with spherical section end-caps. That is, a sphereocylinder with end caps that have a radius larger than that of the cylinder and the center of the end cap radius lies within the cylinder. Note: As the length of cylinder -->0, it becomes a ConvexLens. It must be that rad_cyl <(=) rad_cap. [Parameters]; scale: volume fraction of spheres, background:incoherent background, rad_cyl: radius of the cylinder, len_cyl: length of the cylinder, rad_cap: radius of the semi-spherical cap, sld_capcyl: SLD of the capped cylinder, sld_solv: SLD of the solvent.""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['rad_cyl'] = ['[A]', None, None] self.details['len_cyl'] = ['[A]', None, None] self.details['rad_cap'] = ['[A]', None, None] self.details['sld_capcyl'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['theta'] = ['[rad]', None, None] self.details['phi'] = ['[rad]', None, None] ## fittable parameters self.fixed=['rad_cyl.width', 'len_cyl', 'rad_cap', 'phi.width', 'theta.width'] ## non-fittable parameters self.non_fittable=[] ## parameters with orientation self.orientation_params =['phi', 'theta', 'phi.width', 'theta.width'] def clone(self): """ Return a identical copy of self """ return self._clone(CappedCylinderModel()) def __getstate__(self): """ return object state for pickling and copying """ model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} return self.__dict__, model_state def __setstate__(self, state): """ create object from pickled state :param state: the state of the current model """ self.__dict__, model_state = state self.params = model_state['params'] self.dispersion = model_state['dispersion'] self.log = model_state['log'] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CCappedCylinderModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CCappedCylinderModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CCappedCylinderModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CCappedCylinderModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CCappedCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file