#!/usr/bin/env python ############################################################################## # This software was developed by the University of Tennessee as part of the # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) # project funded by the US National Science Foundation. # # If you use DANSE applications to do scientific research that leads to # publication, we ask that you acknowledge the use of the software with the # following sentence: # # "This work benefited from DANSE software developed under NSF award DMR-0520547." # # copyright 2008, University of Tennessee ############################################################################## """ Provide functionality for a C extension model :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY DO NOT MODIFY THIS FILE, MODIFY ../c_extensions/barbell.h AND RE-RUN THE GENERATOR SCRIPT """ from sans.models.BaseComponent import BaseComponent from sans.models.sans_extension.c_models import CBarBellModel import copy def create_BarBellModel(): obj = BarBellModel() #CBarBellModel.__init__(obj) is called by BarBellModel constructor return obj class BarBellModel(CBarBellModel, BaseComponent): """ Class that evaluates a BarBellModel model. This file was auto-generated from ../c_extensions/barbell.h. Refer to that file and the structure it contains for details of the model. List of default parameters: scale = 1.0 rad_bar = 20.0 [A] len_bar = 400.0 [A] rad_bell = 40.0 [A] sld_barbell = 1e-06 [1/A^(2)] sld_solv = 6.3e-06 [1/A^(2)] background = 0.0 [1/cm] theta = 0.0 [deg] phi = 0.0 [deg] """ def __init__(self): """ Initialization """ # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CBarBellModel.__init__, (self,)) CBarBellModel.__init__(self) ## Name of the model self.name = "BarBellModel" ## Model description self.description ="""Calculates the scattering from a barbell-shaped cylinder. That is a sphereocylinder with spherical end caps that have a radius larger than that of the cylinder and the center of the end cap radius lies outside of the cylinder. Note: As the length of cylinder(bar) -->0, it becomes a dumbbell. And when rad_bar = rad_bell, it is a spherocylinder. It must be that rad_bar <(=) rad_bell. [Parameters]; scale: volume fraction of spheres, background:incoherent background, rad_bar: radius of the cylindrical bar, len_bar: length of the cylindrical bar, rad_bell: radius of the spherical bell, sld_barbell: SLD of the barbell, sld_solv: SLD of the solvent.""" ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['rad_bar'] = ['[A]', None, None] self.details['len_bar'] = ['[A]', None, None] self.details['rad_bell'] = ['[A]', None, None] self.details['sld_barbell'] = ['[1/A^(2)]', None, None] self.details['sld_solv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['theta'] = ['[deg]', None, None] self.details['phi'] = ['[deg]', None, None] ## fittable parameters self.fixed=['rad_bar.width', 'len_bar', 'rad_bell', 'phi.width', 'theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['phi', 'theta', 'phi.width', 'theta.width'] def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_BarBellModel,tuple(), state, None, None) def clone(self): """ Return a identical copy of self """ return self._clone(BarBellModel()) def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CBarBellModel.run(self, x) def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CBarBellModel.runXY(self, x) def evalDistribution(self, x=[]): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CBarBellModel.evalDistribution(self, x) def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CBarBellModel.calculate_ER(self) def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CBarBellModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file