/* TwoPhaseFit.c */ #include "StandardHeaders.h" // Include ANSI headers, Mac headers #include "libTwoPhase.h" // scattering from the Teubner-Strey model for microemulsions - hardly needs to be an XOP... double TeubnerStreyModel(double dp[], double q) { double inten,q2,q4; //my local names q2 = q*q; q4 = q2*q2; inten = 1.0/(dp[0]+dp[1]*q2+dp[2]*q4); inten += dp[3]; return(inten); } double Power_Law_Model(double dp[], double q) { double qval; double inten,A,m,bgd; //my local names qval= q; A = dp[0]; m = dp[1]; bgd = dp[2]; inten = A*pow(qval,-m) + bgd; return(inten); } double Peak_Lorentz_Model(double dp[], double q) { double qval; double inten,I0, qpk, dq,bgd; //my local names qval= q; I0 = dp[0]; qpk = dp[1]; dq = dp[2]; bgd = dp[3]; inten = I0/(1.0 + pow( (qval-qpk)/dq,2) ) + bgd; return(inten); } double Peak_Gauss_Model(double dp[], double q) { double qval; double inten,I0, qpk, dq,bgd; //my local names qval= q; I0 = dp[0]; qpk = dp[1]; dq = dp[2]; bgd = dp[3]; inten = I0*exp(-0.5*pow((qval-qpk)/dq,2))+ bgd; return(inten); } double Lorentz_Model(double dp[], double q) { double qval; double inten,I0, L,bgd; //my local names qval= q; I0 = dp[0]; L = dp[1]; bgd = dp[2]; inten = I0/(1.0 + (qval*L)*(qval*L)) + bgd; return(inten); } double Fractal(double dp[], double q) { double x,pi; double r0,Df,corr,phi,sldp,sldm,bkg; double pq,sq,ans; pi = 4.0*atan(1.0); x=q; phi = dp[0]; // volume fraction of building block spheres... r0 = dp[1]; // radius of building block Df = dp[2]; // fractal dimension corr = dp[3]; // correlation length of fractal-like aggregates sldp = dp[4]; // SLD of building block sldm = dp[5]; // SLD of matrix or solution bkg = dp[6]; // flat background //calculate P(q) for the spherical subunits, units cm-1 sr-1 pq = 1.0e8*phi*4.0/3.0*pi*r0*r0*r0*(sldp-sldm)*(sldp-sldm)*pow((3*(sin(x*r0) - x*r0*cos(x*r0))/pow((x*r0),3)),2); //calculate S(q) sq = Df*exp(gammln(Df-1.0))*sin((Df-1.0)*atan(x*corr)); sq /= pow((x*r0),Df) * pow((1.0 + 1.0/(x*corr)/(x*corr)),((Df-1.0)/2.0)); sq += 1.0; //combine and return ans = pq*sq + bkg; return(ans); } double DAB_Model(double dp[], double q) { double qval,inten; double Izero, range, incoh; qval= q; Izero = dp[0]; range = dp[1]; incoh = dp[2]; inten = Izero/pow((1.0 + (qval*range)*(qval*range)),2) + incoh; return(inten); } // G. Beaucage's Unified Model (1-4 levels) // double OneLevel(double dp[], double q) { double x,ans,erf1; double G1,Rg1,B1,Pow1,bkg,scale; x=q; scale = dp[0]; G1 = dp[1]; Rg1 = dp[2]; B1 = dp[3]; Pow1 = dp[4]; bkg = dp[5]; erf1 = erf( (x*Rg1/sqrt(6.0))); ans = G1*exp(-x*x*Rg1*Rg1/3.0); ans += B1*pow((erf1*erf1*erf1/x),Pow1); ans *= scale; ans += bkg; return(ans); } // G. Beaucage's Unified Model (1-4 levels) // double TwoLevel(double dp[], double q) { double x; double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; double erf1,erf2,scale; x=q; scale = dp[0]; G1 = dp[1]; //equivalent to I(0) Rg1 = dp[2]; B1 = dp[3]; Pow1 = dp[4]; G2 = dp[5]; Rg2 = dp[6]; B2 = dp[7]; Pow2 = dp[8]; bkg = dp[9]; erf1 = erf( (x*Rg1/sqrt(6.0)) ); erf2 = erf( (x*Rg2/sqrt(6.0)) ); //Print erf1 ans = G1*exp(-x*x*Rg1*Rg1/3.0); ans += B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); ans += G2*exp(-x*x*Rg2*Rg2/3.0); ans += B2*pow((erf2*erf2*erf2/x),Pow2); ans *= scale; ans += bkg; return(ans); } // G. Beaucage's Unified Model (1-4 levels) // double ThreeLevel(double dp[], double q) { double x; double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; double G3,Rg3,B3,Pow3,erf3; double erf1,erf2,scale; x=q; scale = dp[0]; G1 = dp[1]; //equivalent to I(0) Rg1 = dp[2]; B1 = dp[3]; Pow1 = dp[4]; G2 = dp[5]; Rg2 = dp[6]; B2 = dp[7]; Pow2 = dp[8]; G3 = dp[9]; Rg3 = dp[10]; B3 = dp[11]; Pow3 = dp[12]; bkg = dp[13]; erf1 = erf( (x*Rg1/sqrt(6.0)) ); erf2 = erf( (x*Rg2/sqrt(6.0)) ); erf3 = erf( (x*Rg3/sqrt(6.0)) ); //Print erf1 ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*pow((erf3*erf3*erf3/x),Pow3); ans *= scale; ans += bkg; return(ans); } // G. Beaucage's Unified Model (1-4 levels) // double FourLevel(double dp[], double q) { double x; double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; double G3,Rg3,B3,Pow3,erf3; double G4,Rg4,B4,Pow4,erf4; double erf1,erf2,scale; x=q; scale = dp[0]; G1 = dp[1]; //equivalent to I(0) Rg1 = dp[2]; B1 = dp[3]; Pow1 = dp[4]; G2 = dp[5]; Rg2 = dp[6]; B2 = dp[7]; Pow2 = dp[8]; G3 = dp[9]; Rg3 = dp[10]; B3 = dp[11]; Pow3 = dp[12]; G4 = dp[13]; Rg4 = dp[14]; B4 = dp[15]; Pow4 = dp[16]; bkg = dp[17]; erf1 = erf( (x*Rg1/sqrt(6.0)) ); erf2 = erf( (x*Rg2/sqrt(6.0)) ); erf3 = erf( (x*Rg3/sqrt(6.0)) ); erf4 = erf( (x*Rg4/sqrt(6.0)) ); ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*exp(-x*x*Rg4*Rg4/3.0)*pow((erf3*erf3*erf3/x),Pow3); ans += G4*exp(-x*x*Rg4*Rg4/3.0) + B4*pow((erf4*erf4*erf4/x),Pow4); ans *= scale; ans += bkg; return(ans); } static double gammln(double xx) { double x,y,tmp,ser; static double cof[6]={76.18009172947146,-86.50532032941677, 24.01409824083091,-1.231739572450155, 0.1208650973866179e-2,-0.5395239384953e-5}; int j; y=x=xx; tmp=x+5.5; tmp -= (x+0.5)*log(tmp); ser=1.000000000190015; for (j=0;j<=5;j++) ser += cof[j]/++y; return -tmp+log(2.5066282746310005*ser/x); }