/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * * TODO: refactor so that we pull in the old sansmodels.c_extensions * TODO: add 2d */ #include #include "parameters.hh" #include using namespace std; #include "stacked_disks.h" extern "C" { #include "libCylinder.h" #include "libStructureFactor.h" } typedef struct { double scale; double radius; double core_thick; double layer_thick; double core_sld; double layer_sld; double solvent_sld; double n_stacking; double sigma_d; double background; double axis_theta; double axis_phi; } StackedDisksParameters; /** * Function to evaluate 2D scattering function * @param pars: parameters of the staked disks * @param q: q-value * @param q_x: q_x / q * @param q_y: q_y / q * @return: function value */ static double stacked_disks_analytical_2D_scaled(StackedDisksParameters *pars, double q, double q_x, double q_y) { double cyl_x, cyl_y, cyl_z; double q_z; double alpha, vol, cos_val; double d, dum, halfheight; double answer; double pi = 4.0*atan(1.0); double theta = pars->axis_theta * pi/180.0; double phi = pars->axis_phi * pi/180.0; // parallelepiped orientation cyl_x = sin(theta) * cos(phi); cyl_y = sin(theta) * sin(phi); cyl_z = cos(theta); // q vector q_z = 0; // Compute the angle btw vector q and the // axis of the parallelepiped cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; // The following test should always pass if (fabs(cos_val)>1.0) { printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); return 0; } // Note: cos(alpha) = 0 and 1 will get an // undefined value from Stackdisc_kern alpha = acos( cos_val ); // Call the IGOR library function to get the kernel d = 2 * pars->layer_thick + pars->core_thick; halfheight = pars->core_thick/2.0; dum =alpha ; answer = Stackdisc_kern(q, pars->radius, pars->core_sld,pars->layer_sld, pars->solvent_sld, halfheight, pars->layer_thick, dum, pars->sigma_d, d, pars->n_stacking)/sin(alpha); // Multiply by contrast^2 //answer *= pars->contrast*pars->contrast; //normalize by staked disks volume vol = acos(-1.0) * pars->radius * pars->radius * d * pars->n_stacking; answer /= vol; //convert to [cm-1] answer *= 1.0e8; //Scale answer *= pars->scale; // add in the background answer += pars->background; return answer; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the staked disks * @param q: q-value * @return: function value */ static double stacked_disks_analytical_2DXY(StackedDisksParameters *pars, double qx, double qy) { double q; q = sqrt(qx*qx+qy*qy); return stacked_disks_analytical_2D_scaled(pars, q, qx/q, qy/q); } StackedDisksModel :: StackedDisksModel() { scale = Parameter(1.0); radius = Parameter(3000.0, true); radius.set_min(0.0); core_thick = Parameter(10.0, true); core_thick.set_min(0.0); layer_thick = Parameter(15.0); layer_thick.set_min(0.0); core_sld = Parameter(4.0e-6); layer_sld = Parameter(-4.0e-7); solvent_sld = Parameter(5.0e-6); n_stacking = Parameter(1); sigma_d = Parameter(0); background = Parameter(0.001); axis_theta = Parameter(0.0, true); axis_phi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double StackedDisksModel :: operator()(double q) { double dp[10]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = radius(); dp[2] = core_thick(); dp[3] = layer_thick(); dp[4] = core_sld(); dp[5] = layer_sld(); dp[6] = solvent_sld(); dp[7] = n_stacking(); dp[8] = sigma_d(); dp[9] = 0.0; // Get the dispersion points for the radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the core_thick vector weights_core_thick; core_thick.get_weights(weights_core_thick); // Get the dispersion points for the layer_thick vector weights_layer_thick; layer_thick.get_weights(weights_layer_thick); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over length weight points for(int i=0; i< (int)weights_radius.size(); i++) { dp[1] = weights_radius[i].value; // Loop over radius weight points for(int j=0; j< (int)weights_core_thick.size(); j++) { dp[2] = weights_core_thick[j].value; // Loop over thickness weight points for(int k=0; k< (int)weights_layer_thick.size(); k++) { dp[3] = weights_layer_thick[k].value; //Un-normalize by volume sum += weights_radius[i].weight * weights_core_thick[j].weight * weights_layer_thick[k].weight* StackedDiscs(dp, q) *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value); //Find average volume vol += weights_radius[i].weight * weights_core_thick[j].weight * weights_layer_thick[k].weight *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value); norm += weights_radius[i].weight * weights_core_thick[j].weight* weights_layer_thick[k].weight; } } } if (vol != 0.0 && norm != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double StackedDisksModel :: operator()(double qx, double qy) { StackedDisksParameters dp; // Fill parameter array dp.scale = scale(); dp.core_thick = core_thick(); dp.radius = radius(); dp.layer_thick = layer_thick(); dp.core_sld = core_sld(); dp.layer_sld = layer_sld(); dp.solvent_sld= solvent_sld(); dp.n_stacking = n_stacking(); dp.sigma_d = sigma_d(); dp.background = 0.0; dp.axis_theta = axis_theta(); dp.axis_phi = axis_phi(); // Get the dispersion points for the length vector weights_core_thick; core_thick.get_weights(weights_core_thick); // Get the dispersion points for the radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the thickness vector weights_layer_thick; layer_thick.get_weights(weights_layer_thick); // Get angular averaging for theta vector weights_theta; axis_theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; axis_phi.get_weights(weights_phi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; double pi = 4.0*atan(1.0); // Loop over length weight points for(int i=0; i< (int)weights_core_thick.size(); i++) { dp.core_thick = weights_core_thick[i].value; // Loop over radius weight points for(int j=0; j< (int)weights_radius.size(); j++) { dp.radius = weights_radius[j].value; // Loop over thickness weight points for(int k=0; k< (int)weights_layer_thick.size(); k++) { dp.layer_thick = weights_layer_thick[k].value; for(int l=0; l< (int)weights_theta.size(); l++) { dp.axis_theta = weights_theta[l].value; // Average over phi distribution for(int m=0; m <(int)weights_phi.size(); m++) { dp.axis_phi = weights_phi[m].value; //Un-normalize by volume double _ptvalue = weights_core_thick[i].weight * weights_radius[j].weight * weights_layer_thick[k].weight * weights_theta[l].weight * weights_phi[m].weight * stacked_disks_analytical_2DXY(&dp, qx, qy) *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value); if (weights_theta.size()>1) { _ptvalue *= fabs(sin(weights_theta[l].value*pi/180.0)); } sum += _ptvalue; //Find average volume vol += weights_radius[j].weight * weights_core_thick[i].weight * weights_layer_thick[k].weight *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value); //Find norm for volume norm_vol += weights_radius[j].weight * weights_core_thick[i].weight * weights_layer_thick[k].weight; norm += weights_core_thick[i].weight * weights_radius[j].weight * weights_layer_thick[k].weight * weights_theta[l].weight * weights_phi[m].weight; } } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); if (vol != 0.0 && norm_vol != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the triaxial ellipsoid * @param q: q-value * @param phi: angle phi * @return: function value */ double StackedDisksModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); } /** * Function to calculate effective radius * @return: effective radius value */ double StackedDisksModel :: calculate_ER() { StackedDisksParameters dp; dp.core_thick = core_thick(); dp.radius = radius(); dp.layer_thick = layer_thick(); dp.n_stacking = n_stacking(); double rad_out = 0.0; if (dp.n_stacking <= 0.0){ return rad_out; } // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Get the dispersion points for the length vector weights_core_thick; core_thick.get_weights(weights_core_thick); // Get the dispersion points for the radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the thickness vector weights_layer_thick; layer_thick.get_weights(weights_layer_thick); // Loop over major shell weight points for(int i=0; i< (int)weights_core_thick.size(); i++) { dp.core_thick = weights_core_thick[i].value; for(int j=0; j< (int)weights_layer_thick.size(); j++) { dp.layer_thick = weights_layer_thick[j].value; for(int k=0; k< (int)weights_radius.size(); k++) { dp.radius = weights_radius[k].value; //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. sum +=weights_core_thick[i].weight*weights_layer_thick[j].weight * weights_radius[k].weight*DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0; norm += weights_core_thick[i].weight*weights_layer_thick[j].weight* weights_radius[k].weight; } } } if (norm != 0){ //return the averaged value rad_out = sum/norm;} else{ //return normal value //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. rad_out = DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0;} return rad_out; } double StackedDisksModel :: calculate_VR() { return 1.0; }