/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * */ #include #include "parameters.hh" #include using namespace std; #include "hollow_cylinder.h" extern "C" { #include "libCylinder.h" #include "libStructureFactor.h" } typedef struct { double scale; double core_radius; double radius; double length; double sldCyl; double sldSolv; double background; double axis_theta; double axis_phi; } HollowCylinderParameters; /** * Function to evaluate 2D scattering function * @param pars: parameters of the hollow cylinder * @param q: q-value * @param q_x: q_x / q * @param q_y: q_y / q * @return: function value */ static double hollow_cylinder_analytical_2D_scaled(HollowCylinderParameters *pars, double q, double q_x, double q_y) { double cyl_x, cyl_y, cyl_z; double q_z; double alpha,vol, cos_val; double answer; //convert angle degree to radian double pi = 4.0*atan(1.0); double theta = pars->axis_theta * pi/180.0; double phi = pars->axis_phi * pi/180.0; // Cylinder orientation cyl_x = sin(theta) * cos(phi); cyl_y = sin(theta) * sin(phi); cyl_z = cos(theta); // q vector q_z = 0; // Compute the angle btw vector q and the // axis of the cylinder cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; // The following test should always pass if (fabs(cos_val)>1.0) { printf("core_shell_cylinder_analytical_2D: Unexpected error: cos(alpha)=%g\n", cos_val); return 0; } alpha = acos( cos_val ); // Call the IGOR library function to get the kernel answer = HolCylKernel(q, pars->core_radius, pars->radius, pars->length, cos_val); // Multiply by contrast^2 answer *= (pars->sldCyl - pars->sldSolv)*(pars->sldCyl - pars->sldSolv); //normalize by cylinder volume vol=pi*((pars->radius*pars->radius)-(pars->core_radius *pars->core_radius)) *(pars->length); answer *= vol; //convert to [cm-1] answer *= 1.0e8; //Scale answer *= pars->scale; // add in the background answer += pars->background; return answer; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the Hollow cylinder * @param q: q-value * @return: function value */ static double hollow_cylinder_analytical_2DXY(HollowCylinderParameters *pars, double qx, double qy) { double q; q = sqrt(qx*qx+qy*qy); return hollow_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); } HollowCylinderModel :: HollowCylinderModel() { scale = Parameter(1.0); core_radius = Parameter(20.0, true); core_radius.set_min(0.0); radius = Parameter(30.0, true); radius.set_min(0.0); length = Parameter(400.0, true); length.set_min(0.0); sldCyl = Parameter(6.3e-6); sldSolv = Parameter(1.0e-6); background = Parameter(0.0); axis_theta = Parameter(0.0, true); axis_phi = Parameter(0.0, true); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double HollowCylinderModel :: operator()(double q) { double dp[7]; dp[0] = scale(); dp[1] = core_radius(); dp[2] = radius(); dp[3] = length(); dp[4] = sldCyl(); dp[5] = sldSolv(); dp[6] = 0.0; // Get the dispersion points for the core radius vector weights_core_radius; core_radius.get_weights(weights_core_radius); // Get the dispersion points for the shell radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the length vector weights_length; length.get_weights(weights_length); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; // Loop over core radius weight points for(int i=0; i< (int)weights_core_radius.size(); i++) { dp[1] = weights_core_radius[i].value; // Loop over length weight points for(int j=0; j< (int)weights_length.size(); j++) { dp[3] = weights_length[j].value; // Loop over shell radius weight points for(int k=0; k< (int)weights_radius.size(); k++) { dp[2] = weights_radius[k].value; //Un-normalize by volume sum += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[k].weight * HollowCylinder(dp, q) * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) * weights_length[j].value; //Find average volume vol += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[k].weight * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) * weights_length[j].value; norm += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[k].weight; } } } if (vol != 0.0 && norm != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param q_x: value of Q along x * @param q_y: value of Q along y * @return: function value */ double HollowCylinderModel :: operator()(double qx, double qy) { HollowCylinderParameters dp; // Fill parameter array dp.scale = scale(); dp.core_radius = core_radius(); dp.radius = radius(); dp.length = length(); dp.sldCyl = sldCyl(); dp.sldSolv = sldSolv(); dp.background = 0.0; dp.axis_theta = axis_theta(); dp.axis_phi = axis_phi(); // Get the dispersion points for the core radius vector weights_core_radius; core_radius.get_weights(weights_core_radius); // Get the dispersion points for the shell radius vector weights_radius; radius.get_weights(weights_radius); // Get the dispersion points for the length vector weights_length; length.get_weights(weights_length); // Get angular averaging for theta vector weights_theta; axis_theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; axis_phi.get_weights(weights_phi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; double pi = 4.0*atan(1.0); // Loop over core radius weight points for(int i=0; i<(int)weights_core_radius.size(); i++) { dp.core_radius = weights_core_radius[i].value; // Loop over length weight points for(int j=0; j<(int)weights_length.size(); j++) { dp.length = weights_length[j].value; // Loop over shell radius weight points for(int m=0; m< (int)weights_radius.size(); m++) { dp.radius = weights_radius[m].value; // Average over theta distribution for(int k=0; k< (int)weights_theta.size(); k++) { dp.axis_theta = weights_theta[k].value; // Average over phi distribution for(int l=0; l< (int)weights_phi.size(); l++) { dp.axis_phi = weights_phi[l].value; //Un-normalize by volume double _ptvalue = weights_core_radius[i].weight * weights_length[j].weight * weights_radius[m].weight * weights_theta[k].weight * weights_phi[l].weight * hollow_cylinder_analytical_2DXY(&dp, qx, qy) / ((pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) * weights_length[j].value); if (weights_theta.size()>1) { _ptvalue *= fabs(sin(weights_theta[k].value * pi/180.0)); } sum += _ptvalue; //Find average volume vol += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[m].weight * (pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) * weights_length[j].value; //Find norm for volume norm_vol += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[m].weight; norm += weights_core_radius[i].weight * weights_length[j].weight * weights_radius[m].weight * weights_theta[k].weight * weights_phi[l].weight; } } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm/asin(1.0); if (vol != 0.0 || norm_vol != 0.0) { //Re-normalize by avg volume sum = sum*(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the cylinder * @param q: q-value * @param phi: angle phi * @return: function value */ double HollowCylinderModel :: evaluate_rphi(double q, double phi) { double qx = q*cos(phi); double qy = q*sin(phi); return (*this).operator()(qx, qy); } /** * Function to calculate effective radius * @return: effective radius value */ double HollowCylinderModel :: calculate_ER() { HollowCylinderParameters dp; dp.radius = radius(); dp.length = length(); double rad_out = 0.0; // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; // Get the dispersion points for the major shell vector weights_length; length.get_weights(weights_length); // Get the dispersion points for the minor shell vector weights_radius ; radius.get_weights(weights_radius); // Loop over major shell weight points for(int i=0; i< (int)weights_length.size(); i++) { dp.length = weights_length[i].value; for(int k=0; k< (int)weights_radius.size(); k++) { dp.radius = weights_radius[k].value; //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. sum +=weights_length[i].weight * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; norm += weights_length[i].weight* weights_radius[k].weight; } } if (norm != 0){ //return the averaged value rad_out = sum/norm;} else{ //return normal value //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. rad_out = DiamCyl(dp.length,dp.radius)/2.0;} return rad_out; }